화학공학소재연구정보센터
Journal of Power Sources, Vol.116, No.1-2, 219-231, 2003
Techniques for jar formation of valve-regulated lead-acid batteries
The market for valve-regulated lead-acid (VRLA) batteries is growing steadily and will be given a further boost as the market for 36-V batteries for the 42-V PowerNet develops over the next few years. The manufacture of VRLA batteries poses, however, a number of complex technical problems that are not experienced in the manufacture of conventional flooded batteries. For the large-scale manufacture of automotive batteries or other small VRLA batteries of 100 Ah or less, jar formation rather than plate formation and dry charge would seem to be a logical and economically sound decision. For this to be successful, however, a number of key issues need to be reviewed, starting with a detailed consideration of battery design. This paper reviews issues associated with the jar formation of VRLA batteries. Guidance is given concerning filling techniques (gravity or vacuum fill), the formation process, charging techniques, and formation algorithms. Battery design and separator optimisation is discussed. The properties of the separator, e.g. wicking rate, fibre composition, surface area and compression, may have a critical impact on acid filling and jar formation, and may partially determine the filling and formation conditions to be used. The control of temperature during formation is particularly important. Formation algorithms and temperature data are presented. Attention is drawn to the possible loss of plate-group compression during the formation process, and how this may be avoided. (C) 2003 Elsevier Science B.V. All rights reserved.