화학공학소재연구정보센터
Polymer, Vol.44, No.19, 5681-5689, 2003
Crystallization and phase separation in blends of high stereoregular poly(lactide) with poly(ethylene glycol)
The effect of cooling rate on crystallization and subsequent aging of high stereoregular poly(lactide) (PLA) blended with poly(ethylene glycol) (PEG) was studied by thermal analysis and by direct observation of the solid state structure with atomic force microscopy (AFM). Blending with PEG accelerated crystallization of PLA. When a PLA/PEG 70/30 (wt/wt) blend was slowly cooled from the melt, PLA crystallized first as large spherulites followed by crystallization of PEG. The extent of PLA crystallization depended on the cooling rate, however, for a given blend composition the PEG crystallinity was proportional to PLA crystallinity. The partially crystallized blend obtained with a cooling rate of 30 degreesC min(-1) consisted of large spherulites dispersed in a homogeneous matrix. The blend was not stable at ambient temperature. With time, epitaxial crystallization of PEG on the edges of the spherulites depleted the surrounding region of PEG, which created a vitrified region surrounding the spherulites. Further from the spherulites, the homogeneous amorphous phase underwent phase separation with formation of a more rigid PLA-rich phase and a less-rigid PEG-rich phase. Decreasing the amount of PEG in the blend decreased the crystallization rate of PLA and increased the nucleation density. The amount of PLA crystallinity did not depend on blend composition, however, PEG crystallinity decreased to the extent that PEG did not crystallize in a PLA/PEG 90/10 (wt/wt) blend. (C) 2003 Elsevier Ltd. All rights reserved.