화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.37, No.3, 487-493, June, 1999
합성 양어장수 속의 NH3-N 제거 위한 질화세균 고정화된 생물반응기
Nitrifier Consortium Immobilized Bioreactor for NH3-N Removal in Synthetic Aquaculture Water
초록
순양 질화세균군을 Ca-alginate에 포괄한 bead를 충진한 충전반응기를 이용한 합성 양어장수 속의 암모니아성 질소 제거실험을 수행한 결과 수력학적 체류시간이 짧아질수록 암모니아성 질소 제거속도는 계속 증가하여 0.02시간의 수력학적 체류시간에서도 감소하지 않았다. 반응기 내경에 대한 충진층 높이의 비가 4일 경우 암모니아성 질소 제거속도가 가장 높은 것으로 나타났다. 암모니아성 질소의 제거속도는 공탑 공기 유속의 증가에 대해 선형적으로 증가하였다. 높은 수력학적 체류시간에서 용존산소는 암모니아성 질소 제거반응의 한계요인으로 나타났으나 0.1시간 이하의 수력학적 체류시간에서는 공급용존산소량에 비해 암모니아성 질소 제거량이 작아 제거속도에 미치는 영향은 없는 것으로 나타났다.
Nitrifier consortium entrapped in Ca-alginate bead was packed into packed bed bioreactor and the performance of bioreactor was evaluated for the removal of ammonia nitrogen from synthetic aquaculture water. Total ammonia nitrogen (TAN) removal rate by packed bed bioreactor was continuously increased with decreasing hydraulic residence time (HRT). The optimum ratio of packing height and inner diameter of reactor (H/D) was 4. TAN removal rate was increased proportionally with superficial liquid velocity. Low dissolved oxygen (DO) concentration was limiting factor for nitrification but DO concentration does not affect nitrification below 0.1 hour of HRT.
  1. Rijn JV, Aquaculture, 39, 181 (1996)
  2. Chin KK, Ong SL, Foo SC, Water Sci. Technol., 27, 141 (1993)
  3. Miller GE, Libey GS, Aquacult. Eng., 3, 39 (1984) 
  4. Roger GL, Klementson SL, Aquacult. Eng., 4, 135 (1985) 
  5. Spotte SH, "Seawater Aquariums, the Captive Environment," Wiley (1979)
  6. Liao PB, Mayo RD, Aquaculture, 3, 61 (1974) 
  7. ENvironmental Protection Agency: "Quality Criteria for Water, Office of Technology Transfer," Washington D.C. (1976)
  8. Environmental Protection Agency: "Process Design for Nitrogen Control," Office of Technology Transfer, Cincinnati, Ohio (1975)
  9. Sharma B, Ahlert RC, Water Res., 11, 897 (1977) 
  10. Grady CPL, Lim HC, "Biological Wastewater Treatment; Theory and Applications," Marcel Dekker, Inc. (1980)
  11. Ariga O, Takagi H, Nishizawa H, Sano YJ, Ferment. Tech., 65, 651 (1987) 
  12. Asano H, Myoga H, Asano M, Toyao M, Water Sci. Technol., 26, 1037 (1992)
  13. Myoga H, Asano H, Nomura Y, Yoshida H, Water Sci. Technol., 23, 1117 (1991)
  14. Sofer SS, Lewandowski GA, Lodaya MP, Lakhwala FS, Yang KC, Singhi M, J. Water Pollut. Control Fed., 62, 73 (1990)
  15. Tanaka K, Tada M, Kimata T, Harada S, Fujii Y, Mizugu-chi T, Mori N, Emori H, Water Sci. Technol., 23, 681 (1991)
  16. Nitisoravut S, Yang PY, Water Sci. Technol., 26, 923 (1992)
  17. Kim EY, Biochem. Eng. Biotech., 7, 85 (1993)
  18. Tanaka K, Nakao M, Mori N, Emori H, Sumino T, Nakamura Y, Water Sci. Technol., 29, 241 (1994)
  19. Kim SK, Kong IS, Seo JK, Kim BJ, Lee MG, Suh KH, Korean J. Biotechnol. Bioeng., 12, 543 (1997)
  20. APHA, AWWA and WEF: "Standard Methods for the Examination of Water and Wastewater," 18th ed., EPS Group, 4 (1992)
  21. Korea Institute of Industry and Technology: "Standard Methods for the Examination of Environmental Pollution," (1990)
  22. American Society for Testing and Materials: "Standard Methods for Acidity or Alkalinity of Water," Publ. D. 1067-70. American Soc. Testing & Materials, Philadelphia, Pa (1992)
  23. Levenspiel O, "Chemical Reaction Engineering," 2nd ed., John Wiley & Sons, New York (1972)
  24. Losordo TM, Westers H, "System Carrying Capacity and Flow Estimation, Aquaculture Water Reuse System: Engineering Design and Management," Timmons, M.B. and Losordo, T.M. eds., Elsevier, Amsterdam, 14 (1994)
  25. Suh KH, Kim BJ, Cho MC, Cho JK, Kim YH, Kim SK, Korean J. Biotechnol. Bioeng., 13, 238 (1998)
  26. Lee SM, Kim DH, Song KO, Bull. Korean Fish. Soc., 25, 176 (1992)
  27. Bitton G, "Wastewater Microbiology," John Wiley & Sons (1994)
  28. Umbreit WW, Burris RH, Stauffer JF, "Manometric Techniques," Burgess Publishing Company, Minnesota (1957)