화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.37, No.4, 522-530, August, 1999
무수프탈산 생산을 위한 삼·사중 고정층 촉매 반응기 설계
Design of the Triple and Quadruple Fixed-Bed Catalytic Reactor for Phthalic Anhydride production
초록
2차원 유사균일상 모델을 사용 o-xylene의 부분산화로부터 무수프탈산을 생산하는 삼·사중 고정층 촉매 반응기의 매개변수 감응도와 최적 촉매층 길이를 구하였다. 다양한 조업조건(반응물의 초기농도, 냉매온도, 반응물과 냉매유속 등)변화를 통해 삼·사중 고정층 촉매 반응기의 안전조업 범위를 제시하였다. 삼·사중 고정층 촉매 반응기는 기존 연구 결과인 단일 및 이중 고정층 촉매 반응기[1]보다 반응물의 초기농도, 냉매온도, 반응물과 냉매의 유량에 대한 넓은 조업범위를 가지므로 조업 조건의 작은 변화에 의한 생산량 증가는 물론 안전 조업 조건을 보장할 수 있었다. 최대 수율을 얻을 수 있는 삼·사중층 반응기를 설계하기 위하여 각 촉매층 길이를 변화시켜 고정층 촉매 반응기의 성능을 조사하였다. 삼중층 반응기의 경우, 전 촉매층 길이 z=2.58m에서 각 촉매층 길이는 L1=1.1, L2=1.0 및 L3=0.48m 그리고 사중층의 경우 z=2.58m 상태에서 L1=1.0, L2=0.5, L3=0.48 및 L4=0.6m에서 최고의 성능을 보였다.
The parametric sensitivity and optimal catalyst bed length of triple and quadruple fixed-bed catalytic reactors (FBCRs) are calculated using a two-dimensional pseudohomogeneous model for the partial oxidation of o-xylene to phthalic anhydride. The safety operation ranges of triple and quadruple FBCRs from various operating condition changes like initial concentration of the reactant, temperature of the cooling medium, and reactant and coolant flow rate are presented. Triple and quadruple FBCRs showed the behavior of wide operating range than single and double FBCRs on the initial concentration, coolant temperature, and reactant and coolant flow rate. Triple and quadruple FBCRs with nonuniform activities could assure safety operating condition and production increase by minute variation of operating condition. In order to design the FBCRs which could obtained maximum yield, we investigated the performance of FBCRs from catalyst bed length changes. Triple and quadruple FBCRs showed the best performance at L1=1.1, L2=1.0 and L3=0.48m, and L1=1.0, L2=0.5, L3=0.48 and L4=0.6m in case of total catalyst bed length z=2.58m.
  1. Yun YS, Park PW, Rho HL, Jeong YO, HWAHAK KONGHAK, 35(3), 380 (1997)
  2. Bilous O, Amundson NR, AIChE J., 2, 117 (1956) 
  3. Juncu G, Floarea O, AIChE J., 41(12), 2625 (1995) 
  4. Hlavacek V, Ind. Eng. Chem., 62, 8 (1970)
  5. Karanth NG, Hughes R, Catal. Rev.-Sci. Eng., 9(2), 119 (1974)
  6. Parent YO, Caram HS, Coughlim RW, AIChE J., 29, 443 (1983) 
  7. Yun YS, Park PW, Jeong YO, Han SB, HWAHAK KONGHAK, 35(5), 717 (1997)
  8. Froment GF, Chem. Ing. Tech., 4, 374 (1974)
  9. Yoon YS, Ph.D. Dissertation, Pusan National University (1998)
  10. Jeong YO, Ph.D. Dissertation, University of Houston, U.S.A. (1989)
  11. Papageorgiou JN, Froment GF, Chem. Eng. Sci., 51(10), 2091 (1996) 
  12. Pirkle JC, Wachs IE, Chem. Eng. Prog., Aug., 29 (1987)