화학공학소재연구정보센터
Biotechnology and Bioengineering, Vol.84, No.6, 723-731, 2003
Genetically engineered binding proteins as biosensors for fermentation and cell culture
The signal-transduction properties and the potential applications of two engineered binding proteins from E. coli were extensively studied. Both proteins have a single cysteine mutation in their polypeptide chains, which allow the introduction of an environmentally sensitive fluorophore: ANS for glucose-binding protein (GBP) and acrylodan for glutamine-binding protein (QBP). Both proteins respond to their ligands in the micromolar range. The proteins can be stored at 4degreesC for at least 5 months. Apparent binding constant, protein concentration, and fluorophore are three major factors that affect the biosensor's responsive ranges. The binding of the ligand is quick and reversible in solution, but the unfavorable dissociation equilibrium and mass-transfer resistance for encapsulated proteins can delay the response to several minutes and the recovery to hours. Simulated results show that using dialysis tubing with a diameter of 1 mm or less is possible to reduce the recovery time to less than 30 minutes. The potential applications of GBP were studied in yeast fermentation and E. coli fermentations in three different scales: 150 mL, 5 mL, and 100 muL. The results were compared with an YSI 2700 Chemistry Analyzer. Although the latter could not give reliable results for the E. coli fermentations as the glucose concentration in LB medium is close to its lower detection limit, the glucose biosensor presented here was successfully applied to each situation. Glutamine-binding protein was tested in cell cultures of two different scales (100 mL and 100 muL) and the results were also compared with those obtained with YSI. Both QBP and YSI gave good results for the 100-mL cell culture, but the relatively large sample volume requirement of YSI (at least 5 muL) prevented it from being used in the 100-muL cell culture. Because of their small sample volume requirements (less than 1 muL) and high sensitivity, the assays described here might find wide applications in high-throughput bioprocessing. (C) Wiley Periodicals, Inc.