Journal of Catalysis, Vol.220, No.1, 66-73, 2003
High-pressure liquid phase hydroconversion of heptane/nonane mixtures on Pt/H-Y zeolite catalyst
The competitive hydroconversion of heptane and nonane molecules in their mixture was studied in a continuous flow, fixed-bed reactor filled with Pt/HY zeolite catalyst. Liquid-phase reaction conditions were established at reaction temperatures of 230, 250, and 270 degreesC by pressurizing the reactor at 100 bar. Hydrogen was supplied in an absorbed state with the liquid hydrocarbon feed. Under these liquid-phase reaction conditions, the apparent reaction rates of heptane and nonane were almost identical. In a similar experiment under vapor-phase conditions, nonane was much more reactive than heptane. The conversion data under liquid-phase conditions were analyzed with an adsorption-reaction model based on intrinsic kinetic parameters obtained from vapor-phase experiments. The model revealed that the enhanced reactivity of heptane in the liquid phase was due to its preferential adsorption. Simulation of the adsorption of the heptane/nonane mixture in the pores of zeolite Y with the configurational-bias Monte Carlo method confirmed the preferential adsorption of heptane in zeolite Y at high pressure. Under such conditions, in zeolite Y supercages the packing of the smaller heptane molecules is more favorable than that of the larger nonane molecules. (C) 2003 Elsevier Inc. All rights reserved.
Keywords:hydrocracking;alkane mixtures;molecular competition;Pt/HY zeolite;liquid phase;high pressure;CBMC simulation