Journal of Colloid and Interface Science, Vol.268, No.2, 330-340, 2003
Skim and cream natural rubber particles: colloidal properties, coalescence and film formation
Cream and skim fractions of freshly tapped natural rubber latex have been studied using atomic force microscopy and scanning electric potential microscopy to elucidate the topology and charge properties in film formation. Elemental distribution maps of the particles have also been obtained using electron energy-loss imaging in a low-energy transmission electron microscope. The two rubber fractions are obtained by centrifugation. The cream fraction is stable while rapid coagulation occurs in the skim fraction. After removal of the coagulum, no further coagulation occurs and the remaining skim rubber particles are stable. The rubber particles from the cream rubber particles contain higher amount of adsorbed protein-phospholipid materials compared to those in the "self-cleaned" skim fraction. This difference in membrane property has a significant impact on the spreading of the cis-1,4-polyisoprene cores, their coalescence and film formation behavior. Coalescence of cream particles appears to be hindered by the membrane materials, forming a rough film that retains the topology of individual particles. Skim particles coalesce more readily, forming relatively smooth films. (C) 2003 Elsevier Inc. All rights reserved.