화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.21, No.1, 257-261, January, 2004
Growth of GaN Nanowires on Si Substrate Using Ni Catalyst in Vertical Chemical Vapor Deposition Reactor
E-mail:
GaN nanowires were successfully grown on Ni-coated Si substrate by direct reaction of gallium with ammonia gas in a home-made vertical tubular chemical vapor deposition reactor. The growth of GaN nanowires was uniformly observed across the Si substrate surface, but the density and average diameter of the nanowires varied along the position of the substrate surface. At the position of 5 cm above Ga source surface, the growth of GaN crystal grains was observed with few nanowires. The length of the nanowires reached several micrometers. The clear lattice fringes in HRTEM image revealed the growth of good quality hexagonal single-crystal GaN nanowires. Photoluminescence of the GaN nanowires showed a strong band edge emission at the energy position of ~3.4 eV with negligible deep level yellow emission. Field emission characteristics of the GaN nanowires showed that the turn-on field of GaN nanowires was ~7.4 V/um with a field enhancing factor β of ~555. The catalytic growth mechanism of the GaN nanowires was discussed on the basis of experimental results in this work.
  1. Ahn SH, Lee SH, Nahm KS, Suh EK, Hong MH, J. Cryst. Growth, 234, 70 (2002) 
  2. Berishev I, Bensaoula A, Rusakova I, Karabutov A, Ugarov M, Ageev VP, Appl. Phys. Lett., 73, 1808 (1998) 
  3. Chen CC, Yeh CC, Chen CH, Yu MY, Liu HL, Wu JJ, Chen KH, Chen LC, Peng JY, Chen YF, J. Am. Chem. Soc., 123(12), 2791 (2001) 
  4. Dekker C, Phys. Today, 52, 22 (1999)
  5. Demangeot F, Frandon J, Renucci MA, Briot O, Gil B, Aulombard RI, Solid State Commun., 100, 207 (1996) 
  6. Derycke V, Martel R, Appernzeller J, Nano Lett., 1, 453 (2001) 
  7. Duan XF, Lieber CM, J. Am. Chem. Soc., 122(1), 188 (2000) 
  8. Han WQ, Fan SS, Li QQ, Hu YD, Science, 277(5330), 1287 (1997) 
  9. He M, Minus I, Zhou P, Mohammed SN, Halpern JB, Jacobs R, Sarney WL, Riba LS, Vispute RD, Appl. Phys. Lett., 77, 3731 (2000) 
  10. Hernadi K, Konya Z, Siska A, Kiss J, Oszko A, Nagy JB, Kiricsi I, Mater. Chem. Phys., 77, 536 (2002)
  11. Kim JR, So HM, Park JW, Kim JJ, Appl. Phys. Lett., 80, 3548 (2002) 
  12. Krivoruchko OP, Zaikovskij VI, Zamaraev KI, Doklady RAN, 329, 744 (1993)
  13. Kumar MS, Kumar J, Mater. Chem. Phys., 77, 341 (2002)
  14. Nahm KS, Kim TY, Lee SH, Korean J. Chem. Eng., 20(4), 653 (2003)
  15. Nahm KS, Mo YH, Shajahan M, Lee SH, Korean J. Chem. Eng., 19(3), 510 (2002)
  16. Odom TW, Huang JL, Kim P, Lieber CM, Nature, 391(6662), 62 (1998) 
  17. Peng HY, Wanf N, Zhou XT, Zheng YF, Lee CS, Lee ST, Chem. Phys. Lett., 359, 241 (2002) 
  18. Sen R, Govindaraj A, Rao CNR, Chem. Phys. Lett., 267, 276 (1997) 
  19. Seo HW, Bae SY, Park J, Yang HN, Park KS, Kim S, J. Chem. Phys., 116(21), 9492 (2002) 
  20. Sugino T, Hori T, Kimura C, Yamamoto T, Appl. Phys. Lett., 78, 3229 (2001) 
  21. Suh DJ, Park OO, Jung HT, Kwon MH, Korean J. Chem. Eng., 19(3), 529 (2002)
  22. Tans SJ, Verschueren ARM, Dekker C, Nature, 393(6680), 49 (1998) 
  23. Underwood RD, Kapolnek D, Keller BP, Keller S, Denbaars SP, Mishra UK, Solid State Electronics, 41, 243 (1997) 
  24. Wang RZ, Wang B, Wang H, Zhou H, Huang AP, Zhu MK, Yana H, Yan XH, Appl. Phys. Lett., 81, 2782 (2002) 
  25. Wildoer JWG, Venema LC, Rinzler AG, Smalley RE, Dekker C, Nature, 391(6662), 59 (1998) 
  26. Yang SH, Ahn SH, Lee WH, Nahm KS, Suh EK, Lim KY, Solid State Electronics, 44, 1655 (2000) 
  27. Yu VD, Kitaev YE, Goncharuk IN, Smirnov AN, Graul J, Semchinova O, Uffmann D, Smirnov MB, Mirgorodsky AP, Evarestov RA, Phys. Rev., B, Condens. Matter, 58, 12899 (1988)
  28. Zhang HZ, Kong YC, Wang YZ, Du X, Bai ZG, Wang JJ, Yu DP, Ding Y, Hang QL, Feng SQ, Solid State Commun., 109, 677 (1999)