Journal of the American Chemical Society, Vol.125, No.51, 15831-15836, 2003
Sensitive high resolution inverse detection NMR spectroscopy of proteins in the solid state
A new indirect detection scheme for obtaining N-15/H-1 shift correlation spectra in crystalline proteins is described. Excellent water suppression is achieved without the need for pulsed field gradients, and using only a 2-step phase cycle. Careful attention to overall NMR instrument stability was found critical for obtaining the best resolution and sensitivity. Magnetic dilution by deuteration of the protein in combination with highspeed magic angle spinning produces H-1 resonances averaging only 0.22 ppm in width, and in some cases lines as narrow as 0.17 ppm are obtained. In application to two different polymorphs of ubiquitin, structure dependent differences in both N-15 and H-1 amide chemical shifts are observed. In one case, distinct shifts for different molecules in the asymmetric unit are seen, and all differ substantially from solution NMR shifts. A gain of 7 in sensitivity makes the method competitive with solution NMR as long as nanocrystalline samples are available.