화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.15, No.1, 1-10, February, 2004
Nanocrystals: Building Blocks for Nanotechnology
E-mail:
Inorganic nanocrystals with certain geometries exhibit unique shape dependent phenomena and subsequent utilization of them as building blocks for the key components of nanodevices is of huge interest. We describe here the current studies on a variety of nanobuilding blocks obtained by liquid phase colloidal synthetic methods. Architecture of these nanocrystals can be simply classified by their dimensionalities; 0-dimensional quantum dots including spheres, cubes, and tetrahedrons, 1-dimensional nanorods and wires, 2-dimensional nanodiscs and plates, and other advanced shapes such as rod-based multipods and nanostars. Several mechanisms and critical parameters for nanocrystal shape guiding processes are carefully examined. The crystalline phase of initial nucleus and a delicate control between thermodynamic and kinetic growth regimes is crucial for determining final architecture of nanocrystals. Once we understand the guiding laws of nanocrystals growth, many new nanobuilding blocks will easily be tailored for the discovery of novel phenomena and also further exciting advancement of nanoscience and nanotechnology.
  1. Chestnoy N, Hull R, Brus LE, J. Chem. Phys., 85, 2237 (1986) 
  2. Steigerwald ML, Brus LE, Accounts Chem. Res., 23, 183 (1990) 
  3. Goldstein AN, Echer CM, Alivisatos AP, Science, 256, 1425 (1992) 
  4. Murray CB, Norris DJ, Bawendi MG, J. Am. Chem. Soc., 115, 8706 (1993) 
  5. Vossmeyer T, Katsikas L, Giersig M, Popovic IG, Diesner K, Chemseddine A, Eychmuller A, Weller H, J. Phys. Chem., 98(31), 7665 (1994) 
  6. Lee KB, Lee SM, Cheon J, Adv. Mater., 13, 517 (2001) 
  7. Kastner MA, Rev. Mod. Phys., 64, 489 (1992)
  8. Klein DL, Roth R, Lim AK, Alivisatos AP, Mceuen PL, Nature, 389(6652), 699 (1997) 
  9. Hu J, Li L, Yang W, Manna L, Wang L, Alivisatos AP, Science, 292, 2060 (2001) 
  10. Park JI, Kang NJ, Jun YW, Oh SJ, Ri HC, Cheon J, Chem. Phys. Chem., 543 (2002)
  11. Bean CP, Livingston JD, J. Appl. Phys., 30, 1205 (1959)
  12. Cullity BD, Introduction to Magnetic Materials Addison Wesley, London (1972)
  13. Markovich G, Collier CP, Henrichs SE, Remacle F, Levine RD, Heath JR, Accounts Chem. Res., 32, 415 (1999) 
  14. Postma HW, Teepen T, Yao Z, Grifoni M, Dekker C, Science, 293, 76 (2001) 
  15. Huang Y, Duan XF, Cui Y, Lauhon LJ, Kim KH, Lieber CM, Science, 294, 1313 (2001) 
  16. Rueckes T, Kim K, Joselevich E, Tseng GY, Cheung CL, Lieber CM, Science, 289, 94 (2000) 
  17. Holmes JD, Johnston KP, Doty RC, Korgel BA, Science, 287(5457), 1471 (2000) 
  18. Murphy CJ, Jana NR, Adv. Mater., 14, 80 (2002) 
  19. Peng XG, Manna L, Yang WD, Wickham J, Scher E, Kadavanich A, Alivisatos AP, Nature, 404(6773), 59 (2000) 
  20. Peng ZA, Peng XG, J. Am. Chem. Soc., 123(7), 1389 (2001) 
  21. Park SJ, Kim S, Lee S, Khim ZG, Char K, Hyeon T, J. Am. Chem. Soc., 122(35), 8581 (2000) 
  22. Tang Z, Kotov NA, Giersig M, Science, 297, 237 (2002) 
  23. Sugimoto T, Monodipersed Particles; Elsevier: Amsterdam (2001)
  24. Penn RL, Banfield JF, Geochim. Cosmochim. Acta, 63, 1549 (1999) 
  25. Pacholski C, Kornowski A, Weller H, Angew. Chem.-Int. Edit., 41, 1188 (2002) 
  26. Manna L, Scher EC, Alivisatos AP, J. Am. Chem. Soc., 122(51), 12700 (2000) 
  27. Puntes VF, Zanchet D, Erdonmez CK, Alivisatos AP, J. Am. Chem. Soc., 124(43), 12874 (2002) 
  28. Kim YH, Jun YW, Jun BH, Lee SM, Cheon JW, J. Am. Chem. Soc., 124(46), 13656 (2002) 
  29. Yeh CY, Lu ZW, Froyen S, Zunger A, Phys. Rev., B, Condens. Matter, 46, 10086 (1992)
  30. Jun YW, Jung YY, Cheon J, J. Am. Chem. Soc., 124(4), 615 (2002) 
  31. Jun YW, Lee SM, Kang NJ, Cheon J, J. Am. Chem. Soc., 123(21), 5150 (2001) 
  32. Lee SM, Jun YW, Cho SN, Cheon J, J. Am. Chem. Soc., 124(38), 11244 (2002) 
  33. Peng ZA, Peng XG, J. Am. Chem. Soc., 124(13), 3343 (2002)