화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.10, No.1, 129-138, January, 2004
Features and efficiency of some platinized TiO2 photocatalysts
E-mail:
Three commercial powdered photocatalysts, Degussa P25 (P25), Sachtleben Hombikat UV100 (UV100) and Millennium TiONA PC 50 (PC50) have been platinized to incorporate 0.5 and 1 wt.% Pt on the surface of the particles. The physicochemical properties (S-BET, particle size, morphology of the particles, etc.) have been measured and compared among the samples. The photocatalytic efficiency has been tested with two environmentally important oligocarboxylic acids, EDTA and NTA (5 mM). No strong differences could be observed among the catalysts in the case of EDTA, and an inhibition was observed in all cases. A striking effect of platinization has been observed in the case of NTA degradation, with a change in the kinetics from zero order in the pure precursors to first order in the platinized samples. Pure and platinized HB samples were the best photocatalysts for NTA. An optimum Pt amount (0.5 wt.%) was observed for the photoefficiency of the samples. It can be concluded that the efficiency is more dependent on the nature of the substrate to be degraded than on the physicochemical properties of the samples.
  1. Linsebigler AL, Lu GQ, Yates JT, Chem. Rev., 95(3), 735 (1995)
  2. Guillard C, Disdier J, Herrmann JM, Lehaut C, Chopin T, Malato S, Blanco J, Catal. Today, 54(2-3), 217 (1999)
  3. Lindner M, Theurich J, Bahnemann DW, Water Sci. Technol., 35, 79 (1997)
  4. Mills A, Porter G, J. Chem. Soc.-Faraday Trans., 78, 3659 (1982)
  5. Ohtani B, Iwai K, Nishimoto S, Sato S, J. Phys. Chem. B, 101(17), 3349 (1997)
  6. Sadeghi M, Liu W, Zhang TG, Stavropoulos P, Levy B, J. Phys. Chem., 100(50), 19466 (1996)
  7. Siemon U, Bahnemann D, Testa JJ, Rodrguez D, Litter M, Bruno N, J. Photochem. Photobiol. A-Chem., 148, 247 (2002)
  8. Bahnemann D, Monig J, Chapman R, J. Phys. Chem., 91, 3782 (1987)
  9. Gerischer H, J. Electroanal. Chem., 58, 263 (1975)
  10. Tamura H, Yoneyama H, Iwakura C, Sakamoto H, Murakami S, J. Electroanal. Chem., 80, 357 (1977)
  11. Disdier J, Herrmann JM, Pichat P, J. Phys. Chem., 88, 5210 (1984)
  12. Kobayashi T, Yoneyama H, Tamura H, J. Electrochem. Soc., 130, 1706 (1983)
  13. Bahnemann DW, Hilgendorff M, Memming R, J. Phys. Chem. B, 101(21), 4265 (1997)
  14. Bockelmann D, Lindner M, Bahnemann D, Fine Particles Science and Technology, NATO-ASI Series 3, High Technology, E. Pelizetti Ed., Vol. 12, p. 675, Kluwer, Dordrecht (1996)
  15. Herrmann JM, Mu W, Pichat P, Heterogeneous Catalysts and Fine Chemicals II, M. Guisnet, J. Barrault, C. Bouchoule, D. Duprez, G. Perot, and R. Manuel Eds., Elsevier, Amsterdam (1991)
  16. Hufschmidt D, Bahnemann D, Testa JJ, Emilio CA, Litter MI, J. Photochem. Photobiol. A-Chem., 48, 225 (2002)
  17. Kraeutler B, Bard AJ, J. Am. Chem. Soc., 100, 2239 (1978)
  18. Hatchard CG, Parker CA, Proc. Roy. Soc. A, 235, 518 (1956)
  19. Kratochvil B, White MC, Anal. Chem., 37, 111 (1965)
  20. Andrianirinaharivelo SL, Pilichowski JF, Bolte M, Transition Met. Chem., 18, 37 (1993) 
  21. Criado JM, Real C, J. Chem. Soc.-Faraday Trans., 79, 2765 (1983)
  22. Klug HP, Alexander LE, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd Edn., p. 656 and pp. 687-708, Wiley, New York (1974)
  23. Herrmann JM, Guillard C, Disdier J, Lehaut C, Malato S, Blanco J, Appl. Catal. B: Environ., 35(4), 281 (2002)
  24. Gregg SJ, Sing KSW, Adsorption, Surface Area and Porosity, Academic Press, London (1991)
  25. Colon G, Hidalgo MC, Navio JA, J. Photochem. Photobiol. A-Chem., 138, 79 (2001)
  26. Hidalgo MC, Colon G, Navio JA, J. Photochem. Photobiol. A-Chem., 148, 341 (2002)
  27. Babay PA, Emilio CA, Ferreyra RE, Gautier EA, Gettar RT, Litter MI, Int. J. Photoenergy, 3, 193 (2001)
  28. Babay PA, Emilio CA, Ferreyra RE, Gautier EA, Gettar RT, Litter MI, Water Sci. Technol., 44, 179 (2001)
  29. Wang CY, Rabani J, Bahnemann DW, Dohrmann JK, J. Photochem. Photobiol. A-Chem., 148, 169 (2002)