화학공학소재연구정보센터
Polymer(Korea), Vol.28, No.2, 170-176, March, 2004
반응조건에 따른 실록산으로 코팅된 마그네타이트 나노입자의 크기 및 분포
Effect of Reaction Conditions on the Size and Size Distribution of Magnetite Nanoparticles Coated with Siloxane
E-mail:
초록
반응조건에 따른 실록산으로 코팅된 마그네타이트 나노입자의 크기 및 분포를 동적광산란을 이용하여 조사하였다. FT-IR로부터 마그네타이트의 표면에 히드록시기가 존재함을 확인하였고 이 히드록시기는 코팅된 실록산의 실란올과 수소결합을 이루고 있음이 확인되었다. 제조된 나노입자의 크기는 반응온도가 증가함에 따라 입자크기는 증가하였고 단량체 함량과 교반속도의 증가에 따라서는 감소하였다. 입자 크기 분포는 반응조건에 따라서 약간의 변화는 있지만 전체적으로 14 ~ 41 nm 크기의 범위를 나타냈다. 제조된 마그네타이트의 자성특성은 vibrating sample magnetometer를 이용하여 초상자성임이 확인되었고 실록산으로 코팅된 나노입자 역시 초상자성을 나타냄을 확인하였다. 반응조건에 따라서는 반응온도가 증가할수록 포화자화강도는 증가하였고 단량체 함량과 교반속도가 증가함에 따라서 포화자화강도가 감소하는 것을 나타내었다.
The effect of reaction conditions on the size and size distribution of superparamagnetic iron oxide coated with siloxane was big investigated by using dynamic light scattering. The hydrogen bond between the hydroxyl groups on the surface of the magnetite and silanol was confirmed by FT-IR. The size of nanoparticles increased with the reaction temperature, but decreased with monomer contents and agitation speeds. There was not a big difference in size of nanoparticles, prepared by different reaction conditions, but its distribution was in the range of 14 ~ 41 nm. All samples exhibited the superparamagnetic nature. The magnetic susceptibility of the nanoparticles increased with the reaction temperature while it decreased with the monomer content and agitation speed.
  1. Robinson PJ, Dunnil P, Lilly MD, Biotechnol. Bioeng., 15, 603 (1973) 
  2. Kronick PL, Campbell GL, Joseph K, Science, 200, 1074 (1978) 
  3. Zimmerman U, Pilwat G, Naturforschungen, 31C, 732 (1976)
  4. Widder KJ, Senyei AE, Scarpelli DG, Proc. Soc. Exp. Bio. Med., 158, 141 (1978)
  5. Kweon JK, Jeong YI, Jang MK, Lee CH, Nah JW, Polym.(Korea), 26(4), 535 (2002)
  6. Widder DJ, Edelman RR, Grief WL, Monda L, AJR, 149, 839 (1987)
  7. Saini S, Stark DD, Hahn PF, Wittenberg J, Brady JT, Ferucci JT, Radiology, 162, 211 (1987)
  8. Stolnik S, Illum L, Davis SS, Adv. Drug. Deliv. Rev., 16, 195 (1995) 
  9. Gupta PK, Hung CT, Magnetically Controlled Targeted Chemotherapy, in Microspheres and Regional Cancer Therapy, N. Willmott and J. Daly, Editors, CRC, Boca Raton, FL, p. 71 (1994)
  10. Senyei A, Widder KJ, Czerlinski G, J. Appl. Phys., 49, 3578 (1978) 
  11. Pouliquen D, Chouly C, Magnetic Microcarriers for Medical Applications, in Microcapsules and Liposomes, R. Arshady, Editor, Citus Books, Vol. II, p. 343 (1999)
  12. Waston AD, Rocklage SM, Carlin MJ, Contast agent, in Magnetic Resonance Imaging, D.D. Stark and W.G. Bradley, Editors, Mosby Year Book, St Louis, p. 372 (1992)
  13. Schwertmann U, Cornell RM, Iron Oxides in the Laboratory, VCH, Weinheim (1991)
  14. Fahlvik AK, Klaveness J, Stark DD, JMRI, 3, 187 (1993)
  15. Jung CW, Jacobs P, Magn. Reson. Imaging, 13, 661 (1995) 
  16. Tiefenauer LX, Tschirky A, Kuhne G, Andres RY, Magn. Reson. Imaging, 14, 391 (1996) 
  17. Sjogren CE, Johansson C, Naevestad A, Sontum PC, Briley-Saeb K, Fahlvik AK, Magn. Reson. Imaging, 15, 55 (1997) 
  18. Roch A, Gillis P, Ouakssim A, Muller RN, J. Magn. Magn. Mater., 201, 77 (1999) 
  19. Kim DK, Zhang Y, Kehr J, Klason T, Bjelke B, Muhammed M, J. Magn. Magn. Mater., 225, 256 (2001) 
  20. Kricheldorf HR, Burger C, Hertler WR, Kochs P, Kreuzer FH, Mulhaupt R, Silicon in Polymer Synthesis, Springer Verlag (1996)
  21. Koenig MF, Huang SJ, Polymer, 36(9), 1877 (1995) 
  22. Walpole SP, Arlington LJ, U.S. Patent, 5,262,176 (1993)
  23. Kim KD, Colloids Surf. A: Physicochem. Eng. Asp., 224, 119 (2003) 
  24. Shukla S, Seal S, "Sol-Gel-Derived Oxide and Sulfide Nanoparticles," in Synthesis, Functionalization and Surface Treatment of Nanoparticles, Marie-Isabelle Baraton, American Scientific, p. 31 (2003)
  25. Cui F, Yang M, Jiang Y, Cun D, Lin W, Fan Y, Kawashima Y, J. Control. Release, 91, 375 (2003)