화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.21, No.2, 537-547, March, 2004
A Comparative Theoretical Study of Au, Ag and Cu Adsorption on TiO2 (110) Rutile Surfaces
E-mail:
The adsorption properties of Au, Ag and Cu on TiO2 (110) rutile surfaces are examined using density functional theory slab calculations within the generalized gradient approximation. We consider five and four different adsorption sites for the metal adsorption on the stoichiometric and reduced surfaces, respectively. The metal-oxide bonding mechanism and the reactivity of metal atoms are also discussed based on the analyses of local density of states and charge density differences. This study predicts that Au atoms prefer to adsorb at the fourfold hollow site over the fivefold-coordinated Ti(5c) and in-plane and bridging O(2c) atoms with the adsorption energy of ? 0.6 eV. At this site, it appears that the covalent and ionic interactions with the Ti(5c) and the O(2c), respectively, contribute synergistically to the Au adsorption. At a neutral F0s center on the reduced surface, Au binds to the surface via a rather strong ionic interaction with surrounding sixfold-coordinated Ti(6c) atoms, and its binding energy is much larger than to the stoichiometric surface. On the other hand, Ag and Cu strongly interact with the surface bridging O(2c) atoms, and the site between two bridging O(2c) atoms is predicted to be energetically the most favorable adsorption site. The adsorption energies of Ag and Cu at the B site are estimated to be ? 1.2 eV and ? 1.8 eV, respectively. Unlike Au, the interaction of Ag and Cu with a vacancy defect is much weaker than with the stoichiometric surface.
  1. Bates SP, Kresse G, Gillan MJ, Surf. Sci., 385, 386 (1997) 
  2. Bell AT, Science, 299, 1688 (2003) 
  3. Bennett RA, Stone P, Price NJ, Bowker M, Phys. Rev. Lett., 82, 3831 (1999) 
  4. Boccuzzi F, Chiorino A, Manzoli M, Andreeva D, Tabakova T, Ilieva L, Iadakiev V, Catal. Today, 75(1-4), 169 (2002) 
  5. Bogicevic A, Jennison DR, Surf. Sci., 515, L481 (2002) 
  6. Bredow T, Pacchioni G, Chem. Phys. Lett., 355, 417 (2002) 
  7. Campbell CT, Parker SC, Starr DE, Science, 298, 811 (2002) 
  8. Campbell CT, Surf. Sci. Rep., 27, 1 (1997) 
  9. Ceperley DM, Alder BJ, Phys. Rev. Lett., 45, 566 (1980) 
  10. Charlton G, Howes P, Nicklin C, Steadman P, Taylor J, Muryn C, Harte S, Mercer J, McGrath R, Norman D, Turner T, Thornton G, Phys. Rev. Lett., 78, 495 (1997) 
  11. Choudhary TV, Goodman DW, Top. Catal., 21, 1 (2002) 
  12. Christensen A, Carter EA, J. Chem. Phys., 114(13), 5816 (2001) 
  13. de Oliveira AL, Wolf A, Schuth F, Catal. Lett., 73(2-4), 157 (2001)
  14. Diebold U, Anderson JF, Ng KO, Vanderbilt D, Phys. Rev. Lett., 77, 1322 (1996) 
  15. Eichler A, Hafner J, Furthmuller J, Kresse G, Surf. Sci., 346, 300 (1996) 
  16. Ferrari AM, Pacchioni G, J. Phys. Chem., 99(46), 17010 (1995) 
  17. Giordano L, Pacchioni G, Bredow T, Sanz JF, Surf. Sci., 471, 21 (2001) 
  18. Guo Q, Cocks I, Williams EM, Phys. Rev. Lett., 77, 3851 (1996) 
  19. Hammer B, Norskov JK, Surf. Sci., 343, 211 (1995) 
  20. Hansen PL, Wagner JB, Helveg S, Rostrup-Nielsen JR, Chausen BS, Topsoe H, Science, 295, 2053 (2002) 
  21. Harrison NM, Wang XG, Muscat J, Scheffler M, Faraday Discussions, 114, 305 (1999) 
  22. Haruta M, Catal. Today, 36(1), 153 (1997) 
  23. Hayashi T, Tanaka K, Haruta M, J. Catal., 178(2), 566 (1998) 
  24. Kolmakov A, Goodman DW, Catal. Lett., 70(3-4), 93 (2000)
  25. Kolmakov A, Goodman DW, Surf. Sci., 490, L597 (2001) 
  26. Kresse G, Hafner J, Phys. Rev., B, Condens. Matter, 47, RC558 (1993)
  27. Kresse G, Furthmuller J, Phys. Rev., B, Condens. Matter, 54, 11169 (1996)
  28. Kresse G, Hafner J, J. Phys.: Condens Mater., 6, 8245 (1994) 
  29. Lindan PJD, Harrison NM, Gillan MJ, White JA, Phys. Rev., B, Condens. Matter, 55, 15919 (1997)
  30. Lopez N, Norskov JK, Surf. Sci., 515, 175 (2002) 
  31. Mattsson AE, Jennison DR, Surf. Sci., 520, L611 (2002) 
  32. Matveev AV, Neyman KM, Yudanov IV, Rosch N, Surf. Sci., 426, 123 (1999) 
  33. Murray PW, Condon NG, Thornton G, Phys. Rev., B, Condens. Matter, 51, 10989 (1995)
  34. Muscat J, Harrison NM, Thorton G, Phys. Rev., B, Condens. Matter, 59, 2320 (1999)
  35. Ng KO, Vanderbilt D, Phys. Rev., B, Condens. Matter, 56, 10544 (1997)
  36. Onishi H, Iwasawa Y, Surf. Sci., 313, L783 (1994) 
  37. Pang CL, Haycock SA, Raza H, Murray PW, Thornton G, Gulesren O, James R, Bullett DW, Phys. Rev., B, Condens. Matter, 58, 1586 (1998)
  38. Perdew J, Zunger A, Phys. Rev., B, Condens. Matter, 23, 5048 (1981)
  39. Perdew J, Chevary J, Vosko S, Jackson K, Pederson M, Singh D, Fiolhais C, Phys. Rev., B, Condens. Matter, 46, 6671 (1992)
  40. Reinhardt P, Hess BA, Phys. Rev., B, Condens. Matter, 50, 12015 (1994)
  41. Santra AK, Goodman DW, J. Phys.: Condens. Matter, 14, R31 (2002)
  42. Schaub R, Wahlstrom E, Ronnau A, Laegsgaard E, Stensgaad I, Besenbacher F, Science, 299, 377 (2003) 
  43. Siegel DJ, Hector LG, Adams JB, Phys. Rev., B, Condens. Matter, 65, 85415 (2002)
  44. Thien-Nga L, Paxon AT, Phys. Rev., B, Condens. Matter, 58, 13233 (1998)
  45. Valden M, Lai X, Goodman DW, Science, 281(5383), 1647 (1998) 
  46. Vanderbilt D, Phys. Rev., B, Condens. Matter, 41, 7892 (1990)
  47. Verdozzi C, Jennison DR, Schultz PA, Sears MP, Phys. Rev. Lett., 82, 799 (1999) 
  48. Vijay A, Mills G, Metiu H, J. Chem. Phys., 118(14), 6536 (2003) 
  49. Vinet P, Ferrante J, Smith JR, Hose JH, J. Phys.: Condens. Matter, 19, L467 (1986)
  50. Wahlstrom E, Lopez N, Schaub R, Thostrup P, Ronnau A, Africh C, Laegsgaard E, Norskov JK, Besenbacher F, Phys. Rev. Lett., 90, 26101 (2003) 
  51. Wang Y, Hwang GS, Surf. Sci., 542, 72 (2003) 
  52. Yang Z, Wu R, Goodman DW, Phys. Rev., B, Condens. Matter, 61, 14066 (2000)
  53. Zhou J, Kang YC, Chen DA, Surf. Sci., 537, L429 (2003) 
  54. Zhukovskii YF, Kotomin EA, Jacobs PWM, Stoneham AM, Phys. Rev. Lett., 84, 1256 (2000) 
  55. Surf. Sci., 343, 211 (1995)