화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.15, No.3, 360-365, May, 2004
광경화형 지방족 에폭시 변성 우레탄 아크릴레이트의 합성과 물성
Synthesis and Properties of Photocurable Aliphatic Epoxy Modified Urethane Acrylate
E-mail:
초록
지방족 에폭시 아크릴레이트의 개질을 위하여 BDGEDA(1,4-butanediol diglycidyl ether diacrylate)와 NPGEDA(neopentylglycol diglycidyl ether diacrylate)에 디이소시아네이트를 도입하여 우레탄 아크릴레이트의 특성을 가지는 광경화형 지방족 에폭시 변성 우레탄 아크릴레이트를 합성하였다. 광개시제를 혼합하여 지방족 에폭시 변성 우레탄 아크릴레이트의 경화특성을 조사하였다. 점도는 NUA가 BUA보다 더 높았다. 유리전이온도는 NUA가 더 높았으며 열안정성도 더 우수하였다. 경도와 내마모성은 NUA(NPGEDA modified urethane acrylate)가 BUA(1,4-BDGEDA modified urethane acrylate)보다 높았으며 Yellow index는 2가지 모두 거의 유사하였으나 BUA가 약간 더 우수하였다. 경화필름의 인장강도는 NUA가 BUA보다 높은 값을 보였으며 신장율은 BUA가 NUA보다 더 높음을 알 수 있었다.
A photocurable aliphatic epoxy modified by urethane acrylate was prepared from BDGEDA, NPGEDA and the diisocyanate in order to improve the properties of an aliphatic epoxy acrylate. After mixing a photoiniatiator, the curing properties of the photocurable aliphatic epoxy modified by urethane acrylate were investigated. The viscosities of NUA were higher than BUA. The glass transition temperatures of NUA were higher than those of BUA, and NUA was thermally more stable than BUA. The hardness and abrasion of NUA were higher than those of BUA. The yellow index of both NUA and BUA showed a similar result but that of BUA was a little higher. NUA had higher tensile strength of UV cured-film than BUA, but BUA had a higher elongation than NUA.
  1. Braithwaite M, Davidson S, Holman R, Lowe C, Oldring PKT, Salim MS, Wall C, Chemistry & Technology of UV & EB Formulation for Coatings, Inks & Paints, ed. P.K.T. Oldring, SITA Technology, London (1991)
  2. Pappas SP, Radiation Curing, Plenum Press, New York (1992)
  3. Pappas SP, UV Curing: Science and Technology, Technology Marketing Corporation, Connecticut (1983)
  4. Jung JC, Polym.(Korea), 10(6), 570 (1986)
  5. Hoyle CE, Kinstle JF, Radiation Curing of Polymeric Materials, American Chemical Society, Washington DC (1990)
  6. Orcel G, Vanpoulle S, Barraud JY, Boniort JY, Overton B, Wire, 46, 206 (1996)
  7. Rodas AH, Bretas RES, Reggianni A, J. Mater. Sci., 21, 3025 (1986) 
  8. Lin SB, Tsay SY, Spechhard TA, Hwang KKS, Jezerc JJ, Cooper SL, Chem. Eng. Commun., 30, 251 (1984)
  9. Speckhard TA, Hwang KKS, Lin SB, Tsay SY, Koshiba M, Ding YS, Cooper SL, J. Appl. Polym. Sci., 30, 647 (1985) 
  10. Ali MA, Khan MA, Ali KM, J. Appl. Polym. Sci., 60(6), 879 (1996) 
  11. Yoo JW, Kim DS, Polym.(Korea), 23(3), 376 (1999)
  12. Kim HD, Lee DJ, Choi JH, Park CC, Polym.(Korea), 18(1), 38 (1994)
  13. Lee KH, Kim BK, Korea Polym. J., 4(1), 1 (1996)
  14. Kim HD, Kang SG, Ha CS, J. Appl. Polym. Sci., 46, 1339 (1992) 
  15. Otsubo Y, Amari T, Watanabe K, J. Appl. Polym. Sci., 29, 4071 (1984) 
  16. Matynia T, Kutyla R, Bukat K, Pienkowska B, J. Appl. Polym. Sci., 55(11), 1583 (1995) 
  17. Bajpai M, Shukla V, Kumar A, Prog. Org. Coat., 44, 271 (2002) 
  18. Maruno T, Ishibashi S, Nakamura K, J. Polym. Sci. A: Polym. Chem., 32(16), 3211 (1994) 
  19. Shi WF, Ranby B, J. Appl. Polym. Sci., 51(6), 1129 (1994) 
  20. Williams TR, J. Appl. Polym. Sci., 31, 1293 (1986) 
  21. Bongiovanni R, Malucelli G, Sangermano M, Priola A, Prog. Org. Coat., 36, 70 (1999) 
  22. Lim JK, Kim DK, Hwang JY, J. Korean Ind. Eng. Chem., 14(6), 818 (2003)
  23. Lim JK, Kim DK, Kim WG, J. Korean Ind. Eng. Chem., accepted (2004)