화학공학소재연구정보센터
Polymer(Korea), Vol.28, No.3, 263-272, May, 2004
컴퓨터지원 공학(CAE)을 이용한 기체 사출 성형의 공정 개선
Process Development of Gas Injection Molding Using Computer Aided Engineering
E-mail:
초록
자동차 계기판을 제조하는 기체 사출 성형의 공정에 있어서 전산 모사를 통한 공정성 및 제조된 제품의 물성 향상에 관한 연구를 수행하였다. ABS 삼원공중합체의 P-V-T 자료를 이용하여 기체 사출 공정을 적용하였으며 시간에 따른 금형 충전 효과를 예측하였다. 또한 기체 사출 성형에 있어서 압력, 충전 시간, 기체의 주입 통로 및 런너의 위치 등 다양한 가공 인자들을 변화시킴으로서 공정의 최적 조건을 찾을 수 있었다. 이러한 전산 모사를 통하여 확립된 공정을 통해 제조된 계기판은 일반적인 사출 성형법에 의해 제조되어진 제품에 비해서 우수한 치수 및 변형 안정성이 개선되었다.
Using computer simulation, the processibility and properties of the instrument panel of automobile produced by gas injection molding were predicted and evaluated. The P-V-T data of ABS, resin were used in the gas injection molding process in order to estimate the mold filling phenomena. The optimum process conditions were found by adjusting the process parameters including pressure, filling time, the positionsof gas channel and runner. The process was simplified and the final instrument panel produced by the gas injection molding was found to have improved dimension stability compared to the one produced by conventional injection molding.
  1. Galli E, "Gas-assist Injection Molding: More Systems," More Molders, More OEMs, PM&E, pp. 27-30, June (1993)
  2. Turng LS, SPE Tech. Paper ANTEC, 50, 452 (1992)
  3. Rusch KC, "Gas-Assissted Injection Molding-A New Technology is Commercialized," Plastics Engineering, Jul. (1989)
  4. Hiber CA, Shen SF, J. Non-Newton. Fluid Mech., 7, 1 (1980) 
  5. Wang VW, Hieber CA, Wang KK, SPE Tech. Paper. ANTEC, 32, 97 (1986)
  6. Maviridis H, Hrymak AN, Vlachopoulos J, Polym. Eng. Sci., 26, 449 (1986) 
  7. Turing LS, Wang VW, SPE Tech. Paper. ANTEC, 49, 297 (1991)
  8. Turng LS, Innov. Polym. Process.: Molding, 43 (1996)
  9. Tateyama H, "Design Innovation for TV Cabinets by Gas Assisted Injection Moulding," Proceedings of the Society of the Plastic Industry's(SPI) Structural Plastics Division's(SPD) 20th Annual Conference and New Product Design Competition, Washington, D.C., Apr. 5-8 (1992)
  10. Shah S, Hlavary D, "Gas Injection Molding of an Automotive Structural Part," Plast. Eng., Oct. (1991)
  11. Avery JA, "Gas Assist Injection Molding: Technological and Commercial Status,", Mar. (1993)
  12. Mapleston P, "Gas-assist Injection Molding: More Variants from more Sources," Modern Plastics International, Feb. (1989)
  13. Gaspari JD, "Gas Injection Demonstrates Automotive Large-Part Potential," Plast. Technol., Sep. (1994)
  14. Shah S, Hlavaty D, SPE Tech. Paper. ANTEC, 49, 1479 (1991)
  15. Kim B, Jang W, Kim J, Chung CW, Park YH, Choe S, Polym.(Korea), 25(6), 855 (2001)
  16. Kim B, Jang W, Kim J, Cho J, Park YH, Choe S, HWAHAK KONGHAK, 41(5), 577 (2003)
  17. Austin C, Kennedy P, Moldflow Data Theory, Moldflow Pty. Ltd., USA (1992)
  18. Ryan ME, Chung TS, Polym. Eng. Sci., 20, 642 (1980) 
  19. Austin C, Kennedy P, Flow Analysis Reference Manual, Moldflow Pty., USA (1993)
  20. Chen BS, Liu WH, Polym. Eng. Sci., 29, 1039 (1988) 
  21. Gas Injection Molding Training Manual, Moldflow Korea (1997)
  22. Hong MW, Injection Molding Technology I, Kijun Press, Seoul, Korea (1989)
  23. Kim JW, Kim CS, Kim HD, Mold Design, Wonchang Press, Incheon, Korea (2002)
  24. Nielsen LE, Landel RF, Mechanical Properties of Polymers and Composites, 2nd Ed., Dekker, N.Y. USA, pp. 15-23 (1994)
  25. Clark CL, Williams R, "Rationalizing Gas-Assist Injection Molding Processing Conditions," SAE, N.Y. USA, pp. 85-89 (1995)
  26. Min BH, J. Inject. Molding Technol., 1, 204 (1997)
  27. Witold B, Roger D, Comeliussen Failure of Plastics, Hanser Publishers, New York (1986)
  28. Woll SL, Cooper DJ, Souder BV, Polym. Eng. Sci., 36(11), 1477 (1996) 
  29. Austin C, Moldflow Design Principles, Wiley, N.Y., USA (1986)