Korean Journal of Chemical Engineering, Vol.21, No.3, 611-620, May, 2004
Quantification and Redox Property of the Oxygen-Bridged Cu2+ Dimers as the Active Sites for the NO Decomposition over Cu-ZSM-5 Catalysts
E-mail:
For a range of Cu-ZSM-5 catalysts with different Cu-exchange levels on the two kinds of ZSM-5 with different Si/Al ratios, temperature programmed reduction using CO (CO-TPR) followed by H2(H2-TPR), and temperature programmed desorption of oxygen (O2-TPD) were conducted using an online mass spectrometer to characterize and quantify the copper species on the catalysts in the calcined state. Copper species on the ZSM-5 were quantitatively characterized as Cu2+, (Cu-O-Cu)2+ and CuO after calcination in oxygen environment. The N2 formation activities of the catalysts in the decomposition of NO were well correlated with the quantified catalytic amounts of the Cu2+ ions involved in the Cu-dimers, (Cu-O-Cu)2+. The mol fraction of the Cu ions present as the Cu-dimers increased at the sacrifice of the isolated Cu2+ with increasing Cu ion exchange level, suggesting that the species could be formed between the two Cu2+ in close proximity. Oxygen that could be thermally desorbed from the oxidized catalysts in the O2-TPD was responsible for the reduction of the Cu-dimers. It was concluded that the decomposition of NO over Cu-ZSM-5 catalyst proceeded by the redox of (Cu-O-Cu)2+, as active centers. With the temperature programmed surface reaction using N2O or NO over an oxidized catalyst sample as well as the O2-TPD, it was possible to estimate the change of the oxidation state of the Cu ions engaged in the Cu-dimers.
Keywords:NO Decomposition;Cu-ZSM-5;Characterization;Oxygen-bridged Cu-dimers;Active Sites;Redox Mechanism;Oxidation State
- Aylor AW, Larsen SC, Reimer JA, Bell AT, J. Catal., 157(2), 592 (1995)
- Beutel T, Sarkany J, Lei GD, Yan JY, Sachtler WM, J. Phys. Chem., 100(2), 845 (1996)
- Campa MC, Indovina V, Minelli G, Moretti G, Pettiti I, Porta P, Riccio A, Catal. Lett., 23(1-2), 141 (1994)
- DaCosta P, Moden B, Meitzner GD, Lee DK, Iglesia E, Phys. Chem. Chem. Phys., 4, 4590 (2002)
- Eranen K, Kumar N, Lindfors LE, Appl. Catal. B: Environ., 4(2-3), 213 (1994)
- Goodman BR, Schneider WF, Hass KC, Adams JB, Catal. Lett., 56(4), 183 (1998)
- Grunert W, Hayes NW, Joyner RW, Shpiro ES, Siddiqui MR, Baeva GN, J. Phys. Chem., 98(42), 10832 (1994)
- Hall WK, Valyon J, Catal. Lett., 15, 311 (1992)
- Hwang C, Kim DH, Woo SI, Catal. Today, 44(1-4), 47 (1998)
- Hwang IC, Woo SI, Appl. Surf. Sci., 121-122, 310 (1997)
- Jang HJ, Hall WK, Ditri J, J. Phys. Chem., 100(22), 9416 (1996)
- Kapteijn F, Marban G, Rodriguezmirasol J, Moulijn JA, J. Catal., 167(1), 256 (1997)
- Kim BS, Lee SH, Park YT, Ham SW, Chae HJ, Nam IS, Korean J. Chem. Eng., 18(5), 704 (2001)
- Konduru MV, Chuang SSC, J. Phys. Chem. B, 103(28), 5802 (1999)
- Kuroda Y, Kumashiro R, Yoshimoto T, Nagao M, Phys. Chem. Chem. Phys., 1, 649 (1999)
- Lei GD, Adelman BJ, Sarkany J, Sachtler WM, Appl. Catal. B: Environ., 5(3), 245 (1995)
- Li Y, Hall WK, J. Catal., 129, 202 (1991)
- Liu DJ, Robota HJ, Catal. Lett., 21, 291 (1993)
- Liu DJ, Robota HJ, Appl. Catal. B: Environ., 4(2-3), 155 (1994)
- Moden B, Da Costa P, Fonfe B, Lee DK, Iglesia E, J. Catal., 209(1), 75 (2002)
- Moden B, Da Costa P, Lee DK, Iglesia E, J. Phys. Chem. B, 106(37), 9633 (2002)
- Moretti G, Catal. Lett., 23(1-2), 135 (1994)
- Sakany J, d'Itri J, Sachtler WMH, Catal. Lett., 16, 241 (1992)
- Shelef M, Catal. Lett., 15, 305 (1992)
- Spoto G, Zecchina A, Bordiga S, Ricchiardi G, Martra G, Leofanti G, Petrini G, Appl. Catal. B: Environ., 3(2-3), 151 (1994)
- Teraoka Y, Tai C, Ogawa H, Furukawa H, Kagawa S, Appl. Catal. A: Gen., 200(1-2), 167 (2000)
- Valyon J, Hall WK, J. Catal., 143, 520 (1993)
- Wang ZQ, Sklyarov AV, Keulks GW, Catal. Today, 33(1-3), 291 (1997)
- Yan JY, Lei GD, Sachtler WM, Kung HH, J. Catal., 161(1), 43 (1996)