화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.42, No.3, 345-354, June, 2004
생물 고분자 Poly(3-Hydroxybutyrate)의 분해를 이용한 광학적으로 순수한 (R)-3-Hydroxybutyrate 생산 공정의 모사와 경제성 평가
Process Analysis and Economic Evaluation for the Production of Enantiomerically Pure (R)-3-Hydroxybutyrate by Degradation of Bacterial Poly(3-Hydroxybutyrate)
E-mail:
초록
미생물에 의해 생산되는 poly[(R)-3-hydroxybutyrate] (PHB)의 분해에 의한 광학적으로 순수한 (R)-3-hydroxybutyrate (R3HB)의 생산 공정을 분석하였다. 화학적 방법과 생물학적 방법에 의한 PHB 분해 공정들을 설계하여 비교하였다. 화학적으로 acidic조건에서 methanolysis에 의한 R3HB 생산 공정의 경우 사용된 유기용매의 양과 생산성은 R3HB의 최종 생산단가에 큰 영향을 미쳤다. 미생물로부터 PHB를 정제하는 방법에 따라 다른 methanolysis조건들이 적용되었으며, R3HB가 연간 1,000톤 규모로 생산되는 공정을 모사한 결과 R3HB의 생산 단가는 $ 16.9/Kg로 계산되었다. 하지만, 같은 생산 규모에서 생물학적으로 미생물 내의 depolymerization system을 이용한 공정에서의 생산 단가는 $ 8.7/Kg R3HB으로 계산되어졌다. 이러한 결과는 정밀화학 원료 물질인 R3HB를 생물 고분자 PHB의생물학적 분해로부터 경제적으로 생산되어질 수 있다는 것을 보여준다.
Processes for the production of enantiomerically pure (R)-3-hydroxybutyrate (R3HB) by degradation of bacterial poly[(R)-3-hydroxybutyrate] (PHB) were analyzed by computer-aided process design. In this study, we have evaluated and economically compared process designs and processes for two different degradation methods which are chemical acidic-methanolysis and biological in vivo depolymerization. In the acidic methanolysis process by chemical reaction, the amount of organic solvent and productivity significantly affected the final price of R3HB. The condition for chemical process was dependent on the purification method of PHB from cells. For the annual production of 1,000 tonnes of R3HB, the process employing chemical methanolysis resulted in the production cost of $ 16.9/Kg R3HB. But, at the same scale, the process involving in vivo depolymerization can provide the most economical production of R3HB, $ 8.7/Kg. This study should show R3HB could be economically produced from bacterial PHB by in vivo depolymerization.
  1. Chiba T, Nakai T, Chem. Lett., 651 (1985) 
  2. Lee SY, Biotechnol. Bioeng., 49(1), 1 (1996) 
  3. Seebach D, Chow HF, Jackson RFW, Sutter MA, Thaisrivongs S, Zimmermann J, Liebigs Ann. Chem., 1281 (1986)
  4. Seebach D, Roggo S, Zimmermann J, "Biological-Chemical Preparation of 3-Hydroxycarboxylic Acids and Their Use in EPC-Syntheses," In: Bartmann, W. and Sharpless, K.B. (eds.). Stereochemistry of Organic and Bioorganic Transformation, Workshop Conferences Hoechst, Vol. 17, VCH Verlagsgesellschaft mbH, Weinheim, Germany, 85-126 (1987)
  5. Seebach D, Beck AK, Breitschuh R, Job K, Org. Synth., 71, 39 (1992)
  6. Seebach D, Zuger MF, Helv. Chim. Acta, 65, 495 (1982) 
  7. Mateu E, Martin M, J. Vet. Med., B48, 569 (2001)
  8. Wegman MA, Janssen MHA, van Rantwijk F, Sheldon RA, Adv. Synth. Catal., 343, 559 (2001) 
  9. Steinbuchel A, Valentin HE, FEMS Microbiol. Lett., 128, 219 (1995)
  10. Jendrossek D, Schirmer A, Schlegel HG, Appl. Microbiol. Biotechnol., 46(5-6), 451 (1996) 
  11. Lee SY, Lee Y, Wang FL, Biotechnol. Bioeng., 65(3), 363 (1999) 
  12. Lee Y, Park SH, Lim IT, Han KB, Lee SY, Enzyme Microb. Technol., 27(1-2), 33 (2000) 
  13. Lee SY, Lee Y, Appl. Environ. Microbiol., 69, 3421 (2003) 
  14. Lee SY, Choi J, Adv. Biochem. Eng. Biotechnol., 71, 183 (2001)
  15. Lee SY, Park SJ, "Fermentative Production of SCL-PHAs," pp. 263-290, In: Doi, Y. and Steinbuchel, A. (eds.), Biopolymers vol. 3a, Wiley-VCH, Weinheim, 263-290 (2002)
  16. Wang F, Lee SY, Appl. Environ. Microbiol., 63, 3703 (1997)
  17. Choi J, Lee SY, Han K, Appl. Environ. Microbiol., 64, 4897 (1998)
  18. Choi J, Lee SY, Bioprocess Eng., 17, 335 (1997) 
  19. Choi JI, Lee SY, Biotechnol. Bioeng., 62(5), 546 (1999) 
  20. Crosby J, "Chirality in Industry-an Overview," In: Collins, A.N., Sheldrake, G.N. and Crosby, J. (eds.). Chirality in Industry, John Wiley & Sons, Chichester, UK, 1-66 (1992)