화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.16, No.2, 57-62, June, 2004
Mechanical degradation kinetics of poly(ethylene oxide) in a turbulent flow
E-mail:
Turbulent drag reduction (DR) efficiency of water soluble poly(ethylene oxide) (PEO) with two different molecular weights was studied as a function of polymer concentration and temperature in a turbulent flow produced via a rotating disk system. Its mechanical degradation behavior as a function of time in a turbulent flow was also analyzed using both a simple exponential decay function and a fractional exponential decay equation. The fractional exponential decay equation was found to fit the experimental data better than the simple exponential decay function. Its thermal degradation further exhibited that the susceptibility of PEO to degradation increases dramatically with increasing temperature.
  1. Amarouchene Y, Kellay H, Phys. Rev. Lett., Art. No. 104502, 89 (2002)
  2. Ataman M, Boucher EA, J. Polym. Sci. B: Polym. Phys., 20, 1585 (1982)
  3. Balkovsky E, Fouxon A, Lebedev V, Phys. Rev. Lett., 84, 4765 (2000) 
  4. Bello JB, Muller AJ, Saez AE, Polym. Bull., 36(1), 111 (1996) 
  5. Brostow W, Ertepinar H, Singh RP, Macromolecules, 23, 5109 (1990) 
  6. Burger ED, Chorn LG, Perkins TK, J. Rheol., 24, 603 (1980) 
  7. Chertkov M, Phys. Rev. Lett., 84, 4761 (2000) 
  8. Choi HJ, Jhon MS, Ind. Eng. Chem. Res., 35(9), 2993 (1996) 
  9. Choi HJ, Kim CA, Sohn JI, Jhon MS, Polym. Degrad. Stabil., 69, 341 (2000) 
  10. Choi HJ, Lim ST, Lai PY, Chan CK, Phys. Rev. Lett., Art. No. 088302, 89 (2002)
  11. de Gennes PG, Physica A, 140, 9 (1986) 
  12. Golda J, Chem. Eng. Commun., 43, 53 (1986)
  13. Groisman A, Steinberg V, Phys. Rev. Lett., 86, 934 (2001) 
  14. Horn AF, Merrill EW, Nature, 312, 140 (1984) 
  15. Jhon MS, Sekhon G, Armstrong R, Adv. Chem. Phys., 66, 153 (1987)
  16. Kakano A, Minoura Y, Macromolecules, 8, 677 (1975) 
  17. Kim CA, Sung JH, Choi HJ, Kim CB, Chun W, Jhon MS, J. Chem. Eng. Jpn., 32(6), 803 (1999) 
  18. Kulicke WM, Kotter M, Adv. Polym. Sci., 89, 1 (1989)
  19. Lee K, Kim CA, Lim ST, Kwon DH, Choi HJ, Jhon MS, Colloid Polym. Sci., 280, 779 (2002) 
  20. Lim ST, Choi HJ, Lee SY, So JS, Chan CK, Macromolecules, 36(14), 5348 (2003) 
  21. Odijk T, Physica A, 298, 140 (2001) 
  22. Rendell RW, Ngai KL, A Fundamental Relaxation between Microscopic and Macroscopic Relaxation Times: Evidence in Relaxation Data, in Relaxations in Complex Systems, K.L. Nagi and G.B. Wright Ed., Naval Research Laboratory, Washington, 309 (1984)
  23. Rho T, Park J, Kim C, Yoon HK, Suh HS, Polym. Degrad. Stabil., 51, 287 (1996) 
  24. Sellin Ollis M, J. Rheol., 24, 667 (1980) 
  25. Sellin RH, Hoyt JW, Scrivener O, J. Hydraulic Res., 20, 29 (1982)
  26. Sreenivasan KR, White CM, J. Fluid Mech., 409, 149 (2000) 
  27. Sung K, Han MS, Kim C, Korea-Aust. Rheol. J., 15(3), 151 (2003)
  28. Tirtaatmadja V, Cooper-White JJ, Gason SJ, Korea-Aust. Rheol. J., 14(4), 189 (2002)
  29. Yang KS, Choi HJ, Kim CB, Jhon MS, Korean J. Rheol., 3(1), 76 (1991)
  30. Yoon SM, Kim NJ, Kim CB, Hur BK, J. Ind. Eng. Chem., 8(6), 564 (2002)