화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.10, No.4, 636-644, July, 2004
Influence of Synthesis Parameters on the Morphology and Particle Size Distribution of Zeolite L
E-mail:
Zeolite L was synthesized hydrothermally from the substrate mixture of Na2O-K2O-Al2O3-SiO2-H2O system at temperatures of 373 ~ 443 K, and the influence of various synthesis parameters on the particle size distribution and surface morphology was investigated. The crystalline zeolite L samples obtained were characterized by means of X-ray powder diffraction, scanning electron microscopy, and particle size analysis. It was established that as the synthesis temperature increased, the average crystal size becomes larger with a broader particle size distribution. Particle size distribution and morphology of zeolite L was also affected by the silica source and the molar ratios of SiO2/Al2O3, (K2O+Na2O)/SiO2, Na2O/(K2O+Na2O), and H2O/(K2O+Na2O). The crystal size decreased significantly by stirring the gel during the synthesis or subjecting the substrate mixture to an aging treatment at room temperature before hydrothermal treatment. Different heating rates applied prior to subsequent isothermal crystallization at 443 K also significantly influence the particle size distribution and the morphology of zeolite L.
  1. Barrer RM, Villiger H, Z. Kristallogr., 128, 352 (1969)
  2. Meier WM, Olson DH, Atlas of Zeolite Structure Types, Butterworth-Heinemann, London (1992)
  3. Pichat P, FrancoParra C, Barthomeuf D, J. Chem. Soc.-Faraday Trans., 71, 99 (1975)
  4. Tamm PW, Mohr DH, Wilson CR, Catalysis 1987, J.W. Ward Ed., p. 335, Elsevier, Amsterdam (1987)
  5. Tsitsishvili GV, Adv. Chem. Ser., 121, 291 (1973)
  6. Breck DW, Grose RW, Adv. Chem. Ser., 121, 319 (1973)
  7. Rabo JA, Poutsma ML, Adv. Chem. Ser., 102, 284 (1971)
  8. Breck DW, Acara NA, U.S. Patent, 3,216,789 (1965)
  9. Nishiimura Y, Nippon Kagaku Zasshi, 91, 1046 (1970)
  10. Tsitsishvilli GV, Krupenikov AY, Mamulashvili MV, Urushadze MV, Russ. J. Phys. Chem., 53, 975 (1979)
  11. Wortel TM, European Patent, Appl. 96, 479 (1983)
  12. Vaughan DEW, European Patent, Appl. 142, 348 (1985)
  13. Verduijn JP, European Patent, Appl. 219, 354 (1987)
  14. Verduijn JP, European Patent, Appl. 288,294 (1988)
  15. Joshi PN, Kotasthane AN, Shiralkar VP, Zeolites, 10, 598 (1990)
  16. Meng XP, Zhang Y, Meng CG, Pang WQ, Proceedings from the Ninth International Zeolite Conference, R. von Ballmoos, J.B. Higgins, and M.M.J. Treacy Eds., p. 297, Montreal (1992)
  17. Ko YS, Ahn WS, Microporous Mater., 9, 131 (1997) 
  18. Flanigen EM, Khatmi H, Szymanski HA, Molecular Sieves Zeolites, Adv. Chem. Ser., 101, Am. Chem. Soc., R.F. Gould Ed., p. 201, Washington, D.C. (1971)
  19. Bajpai PK, Rao Ms, Gokhale KVGK, Ind. Eng. Chem. Prod. Res. Dev., 17, 223 (1978)
  20. Verduijn JP, Int. Patent, WO 91/06367, Exxon Chemicals (1991)
  21. Barrer RM, Beaumont RK, Collela C, J. Chem. Soc.-Dalton Trans., 934 (1974)
  22. Erdem A, Sand LB, J. Catal., 60, 241 (1979)
  23. Borowiak MA, Berak J, Rocz. Chem. Ann. Soc. Chim. Polonorum., 48, 509 (1974)
  24. Franklin KR, Lowe BM, Zeolites, 8, 495 (1988)