화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.38, No.1, 20-25, February, 2000
한외 여과법을 이용한 tert-butyl phenol 제거에 대한 CPC/NaSal 미셀의 영향
Effects of CPC/NaSal Wormlike Micelle on the Removal of tert-Buthl Phenol Using Micellar-Enhanced Ultrafiltration
E-mail:
초록
수용액 내에서 wormlike 미셀(micelle)을 형성시키는 양이온 계면활성제 cetylpyridinium chloride(CPC)와 첨가제 sodium salicylate(NaSal)을 투입하여 UF 막 표면에 겔층을 형성시킴으로써 TBP와 같은 저분자량 유기 화합물을 효과적으로 제거할 수 있는 미셀을 이용한 한외 여과의 실험적 연구를 수행하였다. 회분식 한외 여과 장치를 사용하여 보유액(retentate)의 농도, 첨가제의 농도 및 계면활성제와 첨가제의 몰농비 등에 따른 TBP의 제거율을 살펴보았다. 임계 미셀 농도 이상에서 CPC 등의 계면활성제는 TBP 등의 유기 용질들을 미셀 안으로 가용화 시키며, 한외 여과막을 이용하여 이러한 용액을 여과하였을 경우 미셀은 분리막에 의해 처단되고 투과된 용액에는 미셀 형성에 참여하지 못한 극히 미량의 계면활성제와 유기 화합물만 존재함을 확인하였다. 여과가 진행되면서 보유액의 CPC 및 첨가제 NaSal의 농도가 증가하면 분리막 근처에 겔층을 형성할 뿐만 아니라 점도가 급격히 상승하기 때문에 플럭스가 매우 빠르게 감소하는 경향을 나타내게 되며, 이러한 효과를 감소시키기 위하여 차단분자량이 20,000인 막을 선택하여 플럭스의 감소를 보정하고, TBP의 제거율은 유지하면서 CPC의 제거율보다 향상시켰다. NaSal와 CPC의 비가 0.1인 경우 플럭스는 NaSal가 투입되지 않은 용액과 유사한 값을 나타내었으며, TBP 및 CPC의 제거 효율이 99% 이상을 나타냄을 알 수 있었다.
In this study, we investigated the effects of gel-layer by wormlike micelle on the removal efficiency of tert-butyl phenol(TBP) from aqueous stream using cationic surfactant cetylpyridinium chloride(CPC) with an additive sodium salicylate (NaSal). When the surfactant was added to the solution at the concentration far above its critical micelle concentration, the surfactant molecules formed micelles, into which organic compounds were dissolved. And then, the micellar solution was forced to pass through an ultrafiltration membrane of which the average pore size was smaller than that of the micelle. To prevent the surfactant and organic compounds from leaking through the membrane, the molecular cut-off(MWCO) 20,000 was selected. The membrane with MWCO of 20,000 gave a very satisfactory removal flux. The added NaSal reduced the concentration of CPC in the permeate and provided the additional resistance on the surface of membrane. Indeed, in the presence of NaSal, CPC micelles containing TBP were rejected more effectively. When the molar ratio of NaSal to CPC was 0.1, the flux showed no appreciable change, compared to that with no NaSal. The rejection efficiency of CPC was maintained above 99%.
  1. Porter MC, "Handbook of Separation Techniques for Chemical Engineers," McGraw-Hill, New York (1979)
  2. Tounissou P, Hebrant M, Rodehuser L, Tondre C, J. Colloid Interface Sci., 183(2), 484 (1996) 
  3. Scamehorn JF, Harwell JH, "Surfactant-Based Separation Processes," Dekker, New York (1989)
  4. Uchiyama H, Christian SD, Tucker EE, Scamehorn JF, J. Colloid Interface Sci., 163(2), 493 (1994) 
  5. Dunn RO, Scamehorn JF, Sep. Sci. Technol., 22, 763 (1987)
  6. Hong JJ, Yang SM, Lee CH, J. Chem. Eng. Jpn., 27(3), 314 (1994) 
  7. Yang HS, Han KH, Kang DW, Song MJ, Kim YH, HWAHAK KONGHAK, 34(4), 482 (1996)
  8. Kim CK, Kim SS, Kim DW, Lim JC, Kim JJ, J. Membr. Sci., 147(1), 13 (1998) 
  9. Oh MH, Hong JJ, Yang SM, HWAHAK KONGHAK, 36(4), 588 (1998)
  10. Guo W, Uchiyama H, Tucker EE, Christian SD, Scamehorn JF, Colloids Surf. A: Physicochem. Eng. Asp., 123, 695 (1997) 
  11. Hong S, Faibish RS, Elimelech M, J. Colloid Interface Sci., 196(2), 267 (1997) 
  12. Rao URK, Manohar C, Valaulikar BS, Iyer RM, J. Phys. Chem., 91, 3286 (1987) 
  13. Lin Z, Cai JJ, Scriven LE, Davis HT, J. Phys. Chem., 98(23), 5984 (1994) 
  14. Kim WJ, Yang SM, Kim M, J. Colloid Interface Sci., 194(1), 108 (1997)