Langmuir, Vol.20, No.3, 637-645, 2004
Effect of poly(acrylic acid) block length distribution on polystyrene-b-poly(acrylic acid) block copolymer aggregates in solution. 2. A partial phase diagram
The first paper of the series, which focused on the effect of polydispersity on the self-assembly of block copolymer vesicles, showed that an increase in the width of the poly(acrylic acid) (PAA) block length distribution resulted in a decrease in the size of the vesicles formed. In this paper, the rest of the phase diagram is explored. For the present study, a series of polystyrene-b-poly(acrylic acid) copolymers of an identical polystyrene length of 325 units but of varying degrees of polymerization of PAA was synthesized. Mixtures of the copolymers were made to artificially broaden the molecular weight distribution of PAA at a constant number average of 48 in the polydispersity index (PDI) range of 1.1-3.3. The mixtures were dissolved in dioxane, and water was added slowly to predetermined amounts. Transmission electron microscopy was used to observe aggregate morphologies at different water contents and PAA PDIs. At low water contents, dynamic light scattering was also used to measure the sizes of the aggregates. A partial phase diagram as a function of the water content and PAA PDI was obtained. Large compound micelles and spherical micelles (average diameter of 40 nm) were found at low water contents; however, at a water content of 12% (w/w), a continuum of morphologies from spheres to rods to vesicles was found with increasing PAA PDI. In addition, each copolymer was investigated by itself under identical conditions to those used for the mixtures to determine if There was any segregation of the individual polymers into separate aggregates. No evidence for such segregation was found.