화학공학소재연구정보센터
Langmuir, Vol.20, No.3, 875-881, 2004
Electrochemical instability in the transfer of cationic surfactant across the 1,2-dichloroethane/water interface
The electrochemical instability has been shown to appear in the transfer of cationic surfactant ions across the 1,2-dichloroethane/water interface. Cyclic voltammograms possess all fundamental characteristics that are predicted by the theory of electrochemical instability: the presence of the instability window, that is, the potential range where the interface becomes unstable, the location of the instability window around the standard ion transfer potential of surface-active ions, and the dependence of the width of the instability window on the concentration of the surfactant ions. Electrocapillary measurements clearly demonstrate that the interface becomes unstable, while the interfacial tension is positive, being higher than 20 mN m(-1). The electrocapillary curve exhibits the discontinuities at both ends of the instability window, indicating the similarity between the electrochemical instability and the phase transitions induced by the temperature, pressure, and chemical potential. The results from voltammetry and interfacial tension measurements for cationic surfactants support the idea that the electrochemical instability, so far reported in the transfer of anionic surfactants across the liquid/liquid interface, is one of intrinsic properties of the two-phase systems where the partition of surface-active ions takes place.