화학공학소재연구정보센터
Langmuir, Vol.20, No.7, 2855-2860, 2004
Synthesis of ZnO nanoparticles on a clay mineral surface in dimethyl sulfoxide medium
Nanocrystalline ZnO particles have been prepared with different methods using zinc cyclohexanebutyrate as precursor in dimethyl sulfoxide (DMSO) medium via alkaline hydrolysis. A series of preparations were carried out in the presence of layered silicates (kaolinite and montmorillonite). It was revealed by different measurement techniques that the presence of the clay minerals has a stabilization influence on the size of the ZnO nanocrystals. UV-vis absorption spectra show a blue shift when the nanoparticles are prepared in the presence of the clay minerals. The average particle diameters calculated from the Brus equation ranged from 2.6 to 13.0 nm. The UV-vis spectra of the synthesized nanoparticles did not show any red shift after 2-3 days, demonstrating that stable ZnO nanocrystals are present in the dispersions. The presence of the ZnO nanoparticles was also proven by fluorescence measurements. A number of the nanoparticles are incorporated into the interlamellar space of the clays, and an intercalated structure is formed as proven by X-ray diffraction (XRD) measurements. The size of the nanoparticles in the interlamellar space is in the range of 1-2 nm according to the XRD patterns. Transmission electron microscopy and high-resolution transmission electron microscopy investigations were applied to determine directly the particle size and the size distribution of the nanoparticles.