화학공학소재연구정보센터
Macromolecules, Vol.37, No.2, 573-578, 2004
Controlling surface morphology of electrospun polystyrene fibers: Effect of humidity and molecular weight in the electrospinning process
Electrospinning is a technique used to produce micron to submicron diameter polymeric fibers. The surface of electrospun fibers is important when considering end-use applications. For example, the ability to introduce porous surface features of a known size is required if nanoparticles need to be deposited on the surface of the fiber or if drug molecules are to be incorporated for controlled release. Surface features, or pores, became evident when electrospinning in an atmosphere with more than 30% relative humidity. Increasing humidity causes an increase in the number, diameter, shape, and distribution of the pores. Increasing the molecular weight of the polystyrene (PS) results in larger, less uniform shaped pores. This work includes an investigation of how humidity and molecular weight affect the surface of electrospun PS fibers. The results of varying the humidity and molecular weight on the surface of electrospun PS fibers were studied using optical microscopy, field emission scanning electron microscopy (FESEM), and atomic force microscopy (AFM) coupled with image analysis.