화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.38, No.2, 236-243, April, 2000
반회분식 반응기에서 Polyacrylic Acid를 이용한 Lysozyme Precipitation 연구
Lysozyme Precipitation with Polyacrylic Acid in Semi-batch Reactor
E-mail:
초록
Rushton type 의 반회분식 표준반응기에서 여러 가지 분자량의 PAA(polyacrylic acid)로 lysozyme 침전반응을 실시하여 교반세기, 교반시간 및 PAA 첨가량 등과 같은 조업조건이 침전반응에 미치는 영향을 실험적으로 연구하였다. 분자량 4,000,000의 PAA를 침전제로 사용하였을 경우가 PAA 분자량 450,000과 2,000인 경우보다 동일한 조업조건에서도 lysozyme 침전입자 크기가 크게 나타났으며, lysozyme의 회수율도 높게 나타났다. 반응기내의 교반세기는 PAA 분자량 2,000을 제외하고는 침전입자의 입자크기에는 영향을 주었지만, lysozyme의 회수율에는 PAA 분자량에 관계없이 아무런 영향을 미치지 않았다. 그리고 lysozyme 침전입자의 형태는 PAA 분자량에 관계없이 모두 무정형을 나타내었으며, PAA 분자량에 따른 침전입자의 형태변화는 발견되지 않았다.
Experimental investigation on the effects of operational conditions, such as agitation intensity, agitation time and PAA dosage, on the precipitation of lysozyme and PAA(polyacrylic acid) with several molecular weights in Rushton type standard semi-batch reactor was carried out. When PAA with a molecular weight of 4,000,000 was used as a precipitant, the larger particle size of lysozyme precipitate as well as the higher recovery ratio of lysozyme were obtained than when PAA with a molecular weight of 450,000 and 2,000 were used. The agitation intensity in the reactor influenced the particle size of the precipitate, except for in PAA with a molecular weight of 2,000 but had no influence on the recovery ratio of lysozyme regrdless of the molecular weight of PAA. The morphology of lysozyme precipitate was amorphous, the morphology change was not observed with change of the molecular weight of PAA.
  1. Garcia FAP, J.F. Kennedy and J.M.S. Cabral(Ed.), "Recovery Processes for Biological Materials: Protein Precipitation," John Wiley & Sons (1993)
  2. Clark KM, Glatz CE, Chem. Eng. Sci., 47, 215 (1992) 
  3. Chen W, Walker S, Berg JC, Chem. Eng. Sci., 47, 1039 (1992) 
  4. Clark KM, Glatz CE, Biotechnol. Prog., 3, 241 (1987)
  5. Rohani S, Chen M, Can. J. Chem. Eng., 71, 689 (1993)
  6. Chen W, Berg JC, Chem. Eng. Sci., 48, 1775 (1993) 
  7. Chen M, Rohani S, Biotechnol. Bioeng., 40, 63 (1992) 
  8. Shieh J, Glatz CE, Polym. Preprints, 32, 606 (1991)
  9. Clark KM, Glatz CE, J.F. Hammel, J.B. Hunter and S.K. Sikdar(Ed.), "ACS Symposium Series: Downstream Processing and Bioseparation," ACS, Washington, 419, 170 (1990)
  10. Chen MYY, Hoare M, Dunnill P, Biotechnol. Bioeng., 28, 387 (1986) 
  11. Hill RD, Zadow JG, J. Dairy Res., 41, 373 (1974)
  12. Nelson CD, Glatz CE, Biotechnol. Bioeng., 27, 1434 (1985) 
  13. Fisher RR, Glatz CE, Biotechnol. Bioeng., 32, 777 (1988) 
  14. Gregory J, Colloids Surf., 31, 231 (1988) 
  15. Levich VG, "Physicochemical Hydrodynamics," Prentice-Hall, Englewood Cliffs,New Jersey (1962)
  16. Walles WE, J. Colloid Interface Sci., 27, 797 (1968) 
  17. McCabe WL, Smith JC, Harriott P, "Unit Operations of Chemical Engineering," 4th ed., McGraw-Hill, New York, NY (1985)
  18. Harnby N, Edwards MF, Nienow AW, "Mixing in the Process Industry," Butterworth-Heinemann, Oxford (1992)
  19. Rutherford K, Lee KC, Mahmoudi SM, Yianneskis M, AIChE J., 42(2), 332 (1996) 
  20. Kim WS, Kim YW, Kim WS, J. Korean Ind. Eng. Chem., 9(6), 857 (1998)
  21. Petenate AM, Glatz CE, Biotechnol. Bioeng., 25, 3059 (1983) 
  22. Fisher RR, Glatz CE, Murphy PA, Biotechnol. Bioeng., 28, 1056 (1986) 
  23. Bailey JE, Ollis DF, "Biochemical Engineering Fundamentals," 2nd ed., McGraw-Hill, New York, NY (1986)