Journal of Chemical Physics, Vol.120, No.7, 3311-3322, 2004
Electron-intramolecular-vibration interactions in positively charged phenanthrene-edge-type hydrocarbons
Electron-phonon interactions in positively charged phenanthrene-edge-type hydrocarbons such as phenanthrene, chrysene, and picene are studied. The C-C stretching modes around 1500 cm-1 and the low-frequency modes around 500 cm(-1) strongly couple to the highest occupied molecular orbitals (HOMO) in phenanthrene-edge-type hydrocarbons. The total electron-phonon coupling constants for the monocations (l(HOMO)) of 0.251, 0.135, and 0.149 eV for phenanthrene, chrysene, and picene, respectively, are estimated to be larger than those of 0.130, 0.107, and 0.094 eV for anthracene, tetracene, and pentacene, respectively. The phase patterns difference between the HOMO localized on carbon atoms which are located at the molecular edge in acene-edge-type hydrocarbons and the delocalized HOMO in phenanthrene-edge-type hydrocarbons is the main reason for the result. Strengths of orbital interactions between two neighboring carbon atoms in the HOMO become weaker with an increase in molecular size because the electron density on each carbon atom in the HOMO becomes smaller with an increase in molecular size in phenanthrene-edge-type hydrocarbons. On the other hand, the frontier orbitals of acene-edge-type hydrocarbons have somewhat nonbonding characters and thus cannot strongly couple to the totally symmetric vibrational modes compared with the frontier orbitals of phenanthrene-edge-type hydrocarbons. This is the reason why the l(HOMO) value for phenanthrene-edge-type hydrocarbons decreases with an increase in molecular size more significantly than that for acene-edge-type hydrocarbons, and the reason why the l(HOMO) value for polyphenanthrene with C-2v geometry (0.033 eV) is estimated to be similar to that for polyacene (0.036 eV). The reorganization energies between the neutral molecules and the corresponding monocations for phenanthrene-edge-type hydrocarbons with large molecular size are estimated to be larger than those for acene-edge-type hydrocarbons with large molecular size. (C) 2004 American Institute of Physics.