화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.38, No.2, 282-287, April, 2000
국산 Clinoptilolite를 이용한 암모니아 제거 특성에 관한 연구 Part1: Clinoptilolite의 특성 규명 및 회분식 반응기에서의 암모니아 제거 특성
A Study on Ammonia Removal Properties using Clinoptilolite Part 1: Characterization of Clinoptilolite and Ammonia Removal Properties in Batch Reactor
E-mail:
초록
구룡포산 천연 제올라이트는 주성분이 clinoptilolite이며 heulandite와 mordenite가 혼재되어 있다. 나트륨으로 치환된 제올라이트의 암모니아에 대한 이온교환능력(CEC)은 1.41meq/g이다. 회분식 실험에서 clinoptilolite의 입자크기가 작아질수록, 그리고 초기 나트륨 농도가 낮을수록, SR, 반응시간, 초기 암모니아 농도가 증가할수록 암모니아 제거효율은 증가하였다. 약 3ppm 의 암모니아와 0.7ppm 의 알루미늄이 녹아있는 용액 처리시 암모니아 제거효율은 상대적으로 조금 떨어졌고 알루미늄 제거효율은 70%이상이었다. 폐제올라이트는 pH=12를 가진 염화나트륨 용액으로 SR가 2일 때 95% 이상의 재생효율을 보였다.
A natural zeolite, deposit located at Guryongpo, Young-il bay, was found to be clinoptilolite contatining impurities of heulandite and mordentie. Cation exchange capacity(CEC) for ammonia was about 1.41 meq/g from Na+ form of the zeolite. In batch experiment, removal efficiency of ammonia was increased as particle size of zeolite and initial concentration of Na+ were decreased and SR(Stoichiometric Ratio), time and initial concentration of ammonia increased. More than 70% aluminum ion could be removed from water having 3 ppm ammonia and 0.7ppm Al3+ by the batch adsorption (ion exchange) experiment. Regeneration of used zeolite with NaCl solution of pH=12 has shown more than 95% of regeneration efficiency when SR''(ratio of the amount of NaCl solution employed actually to the amount in a stoichiometric quantity) was equal to 2.0.
  1. Park SG, An SK, Eon SW, "Treatment of Drinking Water," Dongwha Technology, Seoul (1996)
  2. Mercer BW, Ames LL, Touhill CJ, Van Slyke WJ, Dean RB, J. WPCF, 42(2), R95 (1970)
  3. Booker NA, Cooney EL, Priestly AJ, Water Sci. Technol., 34(9), 17 (1996) 
  4. Jorgensen SE, Libor O, LeaGraber K, Barkacs K, Kuna L, Water Res., 13, 159 (1979) 
  5. Schoeman JJ, Water SA, 12(2), 73 (1986)
  6. Soares J, Silva SA, de Oliverira R, Araujo ALC, Mara DD, Pearson HW, Water Sci. Technol., 33(7), 165 (1996) 
  7. Saracco G, Genon G, J. Har. Mater., 37, 191 (1994) 
  8. Metcalf and Eddy: "Wastewater Engineering," 3rd ed., McGraw-Hill, New York (1991)
  9. McLaren JR, Farquhar GJ, J. Environ. Eng. Div., EE4, 9901 (1993)
  10. Klieve JR, Semmens MJ, Water Res., 14, 161 (1979) 
  11. Piper RG, Smith CE, Int. Com. Natural Zeolites, 15, 2 (1983)
  12. Tsitsishvili GV, Andronikashvili TG, Kirov GN, Filizova LD, "Natural Zeolites," Ellis Horwood, New York (1992)
  13. Townsend RP, Loizidou M, Zeolites, 7, 153 (1987) 
  14. Papadopoulos A, Kapetanios EG, Loizidou M, J. Environ. Sci. Health, A31(1), 211 (1996)
  15. Koon JH, Kaufman WJ, SERL Rept. No. 71-5, Univ. of California, California (1971)
  16. Breck DW, "Zeolite Molecular Sieves," John Wiley & Sons (1974)
  17. Sibilia JP, "A Guide to Materials Characterization and Chemical Analysis," VCH, New York (1988)
  18. Robinson SM, Arnold WD, Byers CH, AIChE J., 40(12), 2045 (1994) 
  19. Moon JM, "Development of Water Treatment Process Using Domestic Clinoptilolite," MS Thesis POSTECH (1998)