HWAHAK KONGHAK, Vol.38, No.3, 330-337, June, 2000
폐프린트배선기판(PCBs)과 폐점퍼의 열분해 및 연소 특성에 관한 연구
A Study on the Pyrolysis and Combustion Characteristics of Printed Circuit Boards (PCBs) and Waste Bumper
E-mail:
초록
폐프린트배선기관(PCBs)과 폐범퍼의 열분해 및 연소특성에 관한 연구를 TG, GC-MS 및 FT-IR을 이용하여 수행하였다. 열적 분해반응의 속도상수에 대한 정보를 얻기 위하여 질량감소 곡선 및 그 미분값을 Flynn-Wall, Coats-Redifem 및 Ozawa 방법을 이용하여 해석하였다. 속도론적 연구결과로부터 폐범퍼의 겉보기 활성화에너지 값은 질소분위기에서 보다 공기분위기에서 더 낮은 값을 보여주었으며 반면에 PCBs의 경우 분위기에 따라 겉보기 활성화 에너지 값에 거의 변화가 없음을 알 수 있었다. 생성물의 특성 분석으로부터 PCBs 와 폐범퍼의 열분해 및 연소로부터 생성된 물질은 주로 가스 성분이었으며 산소의 농도가 증가함에 따라 잔류물의 함량은 줄어들었다. 그리고 액상 생성물의 방향족 화합물 성분은 온도가 감소함에 따라 Diels-Alder 반응에 의한 에텐 및 부타디엔 등과 같은 기상 생성물의 재중함으로 인하여 증가하였다. 또한 연소후 생성된 잔류물의 재활용 가능성을 확인하기 위하여 PCBs로부터의 잔류물에 대한 표면적과 adsorption total pore volume을 측정하였다.
The pyrolysis and combustion characteristics of printed circuit boards(PCBs) and waste bumper have been studied by using thermogravimetry(TG), gas chromatograph-mass spectrometry(GC-MS) and fourier transform infrared spectroscope(FT-IR). To obtain the information on the kinetic parameters of thermal decomposition of PCBs and waste bumper, the dynamic thermogravimetric analysis curve and its derivative have been analyzed by Flynn-Wall, Coats-Redfern and Ozawa methods. From the kinetic analysis, the apparent activation energies of waste bumper in air atmosphere are lower than those in nitrogen atmosphere while the apparent activation energies of PCBs are little effected by atmosphere. From the products analysis, the products from the pyrolysis and combustion of PCBs and waste bumper are mainly composed by gaseous products. As the concentrations of oxygen increases, an decreasing tendency of the yield of residue from PCBs is observed. The aromatic compounds of liquid product increase as decreasing the temperature because the gas product such as ethene, propene and butadiene are combined by the Diels-Alder reaction. To verify the possibility for the recycling of residue from pyrolysis and combustion, the resulting residue of PCBs has been analyzed for their surface area and adsorption total pore volume.
- Mills MF, James RK, Antoniuk D, "Future Energy Production System. Heat and Mass Transfer Processes," Vol. II, Hemisphere Publishing Corp., Washington, D.C. (1976)
- Kim S, Ph.D. Dissertation, Wisconsin-Madison Univ., U.S.A. (1995)
- Ghim YS, HWAHAK KONGHAK, 29(6), 752 (1991)
- Day M, Cooney JD, Mackinnon M, Polym. Degrad. Stabil., 48, 341 (1995)
- Seo YC, Sim SG, Born M, J. Korea Solid Wastes Eng. Soc., 14, 741 (1997)
- Gupta AK, J. Energy Resour. Technol., 118, 189 (1996)
- Murty MVS, Grulke EA, Bhattacharyya D, Polym. Degrad. Stabil., 61, 421 (1998)
- Kim KH, Oh JW, Yoo KO, J. Korea Solid Wastes Eng. Soc., 14, 87 (1997)
- Uddin MA, Koizumi K, Murata K, Sakata Y, Polym. Degrad. Stabil., 56, 37 (1997)
- Park SW, Lee JK, Seul SD, HWAHAK KONGHAK, 23(2), 125 (1985)
- Cooney JD, Day M, Wiles DM, J. Appl. Polym. Sci., 28, 2887 (1983)
- Ozawa T, Bull. Chem. Soc. Jpn., 38, 1881 (1965)
- Yang SJ, MS Thesis, Hanyang Univ., Seoul, Korea (1997)