Journal of Colloid and Interface Science, Vol.271, No.1, 47-54, 2004
Isotherm analysis of phenol adsorption on polymeric adsorbents from nonaqueous solution
Macroporous poly(methyl methacrylate-co-divinylbenzene) (PMMA), interpenetrating polymer adsorbent based on poly(styrene-co-divinylbenzene) (PS) and poly(methyl methacrylate-co-divinylbenzene) (PMMA/PS), and macroporous cross-linked poly(N-p-vinylbenzyl acetylamide) (PVBA) were prepared for the adsorption of phenol from cyclohexane. The sorption isotherms of phenol on the three polymeric adsorbents were measured and fitted to Langmuir and Freundlich isotherms. It is shown that the Langmuir isotherm, which is based on a homogeneous surface model, is unsuitable to describe the sorption of phenol on the adsorbents from nonaqueous solution and the Freundlich equation fits the tested three adsorption systems well. The isosteric enthalpy was quantitatively correlated with the fractional loading for the sorption of phenol onto the three polymeric adsorbents. The surface energetic heterogeneity patterns of the adsorbents were described with functions of isosteric enthalpy. The results showed that the tested three polymeric adsorbents exhibited different surface energetic heterogeneity patterns. The initial isosteric enthalpy of phenol sorption on polymeric adsorbent has to do with the surface chemical composition and is free from the pore structure of the polymeric adsorbent matrix. Forming hydrogen bonds between phenol molecules and adsorbent is the main driving force of phenol sorption onto PVBA and PMMA adsorbent from nonaqueous solution. When phenol is adsorbed on PMMA/PS. pi-pi interaction resulting from the stacking of the benzene rings of the adsorbed phenol molecules and the pendant benzene ring of adsorbent is involved. (C) 2003 Elsevier Inc. All rights reserved.