화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.273, No.1, 175-180, 2004
Development of one-dimensional nanostructures through the crystallization of amorphous colloids
In this paper we have demonstrated that the crystallization method of amorphous colloids is convenient and feasible in the large-scale production of one-dimensional (1D) nanostructures. For the crystals with highly anisotropic structures, such as orthorhombic, trigonal, and hexagonal crystals, the crystallization generally tends to occur along the (001) axis. The preparation of orthorhombic bismuth sulfide (Bi2S3) nanorods and trigonal selenium (t-Se) nanowires by the crystallization route was used as typical examples to illustrate the process and mechanism of crystallization. The as-prepared products were characterized with transmission electron microscopy, field-emission scanning electron microscopy, X-ray diffraction, and selected area electron diffraction. Additionally, the detailed crystal growth processes involved in the crystallization of amorphous Bi2O3 colloid were investigated by studying the morphology and structure of intermediates. It demonstrates that the growth of the nanorods is through two key steps: (1) the formation of multiple activated sites on the surface of spherical Bi2O3 colloid and (2) the subsequent preferential growth along these sites. (C) 2004 Elsevier Inc. All rights reserved.