Journal of Colloid and Interface Science, Vol.274, No.2, 531-537, 2004
Electro-optic characteristics of optically interacting beta-FeOOH particles
In this article the influence of multiple light scattering on the basic electro-optic parameters of optically dense colloidal particles is analyzed. The model system is an aqueous suspension of monodisperse ellipsoidal beta-FeOOH particles that displays large electric light scattering variations, including sign reversal, at very low particle volume fractions (two orders of magnitude below the critical concentration of particle electric interactions). The scaling method permits the relative variations in particle electric polarizability to be followed and its relaxation frequency to be determined. Particle rotational relaxation frequency and the phase shift of the responses at this frequency are obtained by the alternating component of the effects. Characteristic field intensity curves in the low-frequency range are used to follow the relative changes induced by the slow electrokinetic effect. The experimental results show that, despite the drastic variations in the effects with volume fraction, the basic electro-optic parameters are independent of multiple scattering and can be adequately determined for any particle concentration, excluding a narrow range in the vicinity of the electro-optic sign reversal. The investigation demonstrates that the dependence of the frequency behavior of aqueous beta-FeOOH on particle volume fraction reported in the literature is due not to optical interactions but to variation of particle surface electric state in the process of dilution. (C) 2004 Elsevier Inc. All rights reserved.
Keywords:electro-optic spectroscopy of colloids monodisperse beta-FeOOH particles;electro-optics of optically;interacting particles