Langmuir, Vol.20, No.11, 4436-4445, 2004
Adsorption of ionic surfactants at an expanding air-water interface
A quantitative model for the kinetics of adsorption of ionic surfactants to an expanding liquid surface is presented for surfactant concentrations below and above the critical micelle concentration (cmc). For surfactant concentrations below the cmc, the electrostatic double layer is accounted for explicitly in the adsorption isotherm. An overflowing cylinder (OFC) was used to create nonequilibrium liquid surfaces under steady-state conditions. Experimental measurements of the surface excess for solutions of cationic surfactants CH3(CH2)(n-1)N+(CH3)(3) Br- (C(n)TAB, n = 12, 14, 16) and the anionic fluorocarbon surfactant sodium bis(1H,1H-nonafluoropentyl)-2-sulfosuccinate (di-CF4) in the OFC are in excellent agreement with the theoretical predictions for diffusion-controlled adsorption for all concentrations studied below the cmc. For surfactant concentrations above cmc, the diffusion of micelles and monomers are handled separately under the assumption of fast micellar breakdown. This simplified model gives excellent agreement for the system C(14)TAB + 0.1 M NaBr above the cmc. Agreement between theory and experiment for C(16)TAB + 0.1 M NaBr is less good. A plausible explanation for the discrepancy is that micellar breakdown is no longer fast on the time scale of the OFC (ca. 0.1 s).