화학공학소재연구정보센터
Langmuir, Vol.20, No.12, 4977-4988, 2004
Interactions between nonpolar surfaces coated with the nonionic surfactant hexaoxyethylene dodecyl Ether C12E6 and the origin of surface charges at the air/water interface
The interactions between nonpolar surfaces coated with the nonionic surfactant hexaoxyethylene dodecyl ether C12E6 were investigated using two techniques and three different types of surfaces. As nonpolar surfaces, the air/water interface, silanated negatively charged glass, and thiolated uncharged gold surfaces were chosen. The interactions between the air/water interfaces were measured with a thin film pressure balance in terms of disjoining pressure as a function of film thickness. The interactions between the solid/liquid interfaces were determined using a bimorph surface force apparatus. The influence of the nature of the surface on the interaction forces was investigated at surfactant concentrations below and above the cmc. The adsorption of the nonionic surfactant on the uncharged thiolated surface does not, as expected, lead to any buildup of a surface charge. On the other hand, adsorption of C12E6 on the charged silanated glass and the charged air/water interface results in a lowering of the surface charge density. The reduction of the surface charge density on the silanated glass surfaces is rationalized by changes in the dielectric permittivity around the charged silanol groups. The reason for the surface charge observed at the air/water interface as well as its decrease with increasing surfactant concentration is discussed and a new mechanism for generation of OH- ions at this particular interface is proposed.