Journal of the Korean Industrial and Engineering Chemistry, Vol.15, No.5, 518-522, August, 2004
소성온도에 따른 CuO-Fe2O3 흡수제의 반응특성 연구
A Study of Desulfurization Ability for CuO-Fe2O3 Sorbents with Various Calcination Temperatures
E-mail:
초록
본 연구에서는 25 wt% SiO2를 지지체로 사용하고, 첨가제 Fe2O3의 함량을 7.5 wt%, 15 wt%, 22.5 wt%로 달리하여 흡수제를 제조하였으며, 흡수제의 소성 온도를 700 ℃, 900 ℃ 그리고 1100 ℃로 달리하여 소성 온도의 변화에 따른 흡수제의 탈황성능을 TGA로 조사하였다. TGA 실험에서 황화온도는 500 ℃로 하였으며, 재생온도는 700 ℃로 하였다. 소성온도가 700 ℃인 흡수제보다 소성온도 900 ℃인 흡수제가 전반적으로 높은 탈황성능을 보였다. 또한 XRD 분석결과 소성 온도 1100 ℃인 흡수제에는 CuFeO2라는 새로운 형태의 화합물이 생성되어, CuFeO2를 포함하고 있지 않은 흡수제보다 훨씬 적은 환원력에도 불구하고 흡수제 100 g 당 10 g 이상의 황을 제거할 수 있는 탈황성능을 보였다.
In this study we investigated desulfurization abilities using a TGA for CuO-Fe2O3 sorbents calcined at three different temperatures of 700 ℃, 900 ℃, and 1100 ℃. CuO was used as the main active material; Fe2O3 was used as a support material. The desulfurization reaction temperature was 500 ℃ and the regeneration reaction temperature was 700 ℃. From the TGA experiments, the desulfurization ability of sorbent was calculated in terms of sulfur loading defined as g of sulfur absorbed per 100 g of sorbent. The sulfur loading of the sorbents calcined at 900 ℃ were higher than those of the sorbents calcined at 700 ℃. From the XRD results we found that CFS sorbents calcined at 1100 ℃ formed the CuFeO2 compound. Due to the formation of CuFeO2 the CFS sorbent calcined at 1100 ℃ showed more than 10 g of sulfur loading per 100 g of sorbent despite of the lowered reduction potential than the other sorbent.
- Ryu CK, Wee YH, Lee JB, Lee YK, Chem. Ind. Technol., 16(1), 17 (1998)
- Moon SJ, Ihm SK, Korean J. Chem. Eng., 11(2), 111 (1994)
- Lee TJ, Kwon WT, Chang WC, Kim JC, Korean J. Chem. Eng., 14(6), 513 (1997)
- Kang SH, Rhee YW, Kang Y, Han KH, Lee CK, Jin GT, HWAHAK KONGHAK, 35(5), 642 (1997)
- Park DH, Lee YS, Kim HT, Yoo KO, HWAHAK KONGHAK, 30(6), 700 (1992)
- Jeon GS, Chung JS, Korean J. Chem. Eng., 12(1), 132 (1995)
- Westmoreland PW, Harrison DP, Environ. Sci. Technol., 10, 659 (1976)
- Ayala RE, Venkataramani VS, Javad A, Hill AH, Advanced Low-Temperature Sorbent, Proceedings of the Advanced Coal-Fired Power Systems Sorbent 95 Review Meeting, 1, 407 (1997)
- Kyotani T, Kawashima H, Tomita A, Palmer A, Furimsky E, Fuel, 68, 74 (1989)
- Patrick V, Kawashima H, Tomita A, Environ. Sci. Technol., 23, 218 (1989)
- Yi KB, Choi EM, Song YK, Rhee YW, HWAHAK KONGHAK, 37(5), 795 (1999)
- Song YK, Lee KB, Lee HS, Rhee YW, Korean J. Chem. Eng., 17(6), 691 (2000)
- Pineda M, Palacios JM, Alonso L, Garcia E, Moliner R, Fuel, 79(8), 885 (2000)
- Slimane RB, Abbasian J, Fuel Process. Technol., 70, 97 (2001)
- Lee HS, Kang MP, Song YS, Lee TJ, Rhee YW, Korean J. Chem. Eng., 18(5), 635 (2001)
- Tamhankar SS, Bagajewicz M, Gavalas GR, Ind. Eng. Chem. Process Des. Dev., 25, 429 (1986)
- Kang MP, Lee HS, Lee TJ, Rhee YW, HWAHAK KONGHAK, 40(4), 492 (2002)