Journal of the Korean Industrial and Engineering Chemistry, Vol.15, No.5, 549-557, August, 2004
황화수소 제거를 위한 SiC 지지체의 산화철 흡수제 개발
The Development of SiC-Supported Iron Oxide Sorbent for H2S Removal
E-mail:
초록
고온건식 탈황반응 과정에 적합한 흡수제를 개발하고자 산화철 흡수제의 강도와 내마모도를 향상시킬 수 있는 지지체로서 SiC를 선정하였으며, 촉매시너지효과와 원소 황을 회수하기 위해서 옥살산 처리와 소성과정을 거친 Sb2O3를 첨가하여 FeSbO4 화합물을 형성하였다. 제조한 흡수제의 물성은 BET, XRD 및 SEM 등으로 분석하였으며, TGA와 GC 분석을 통하여 최적의 소성온도, 첨가제의 함량, 산화철의 함량과 반응온도를 고찰하였다. 소결을 통해 다공성 지지체가 형성되었고, 지지체 표면을 산화처리 함으로써 지지체와 주 활성성분의 결합력 증가로 인하여 내마모성과 안정성이 향상되었다. 600 ℃의 반응온도에서 상업적인 흡수제의 기준인 10%를 초과하는 18%정도의 탈황능을 보였으며, 지지체의 함량이 20% 증가할 때, 파쇄강도는 13% 정도 향상되는 것을 확인할 수 있었다.
To develop a suitable sorbent for HGD (hot gas desulfurization) process, this study employed SiC(silicon carbide) as a support material that can improve the strength and durability of iron oxide sorbent. Further, for synergic effect and direct recovery of sulfur, the sorbent was added with Sb2O, which has gone through the steps of calcination and oxalic acid treatment, thus producing FeSbO4 compound. The properties of the prepared sorbents were analyzed via BET, XRD and SEM, and optimum calcination temperature, contents of additives, contents of iron oxide, and reaction temperature were also investigated by TGA and GC. The above experiments revealed that porous supports were produced via sintering, and oxidization of the surface of the supports led to increase in bonding strength among the active ingredients thereby improving both durability and stability. In addition, the sulfidation/regeneration reaction at 600 ℃ showed the desulfurization ability of 18%, which is much higher than that of the standard commercial sorbent of 10%, and crush strength was improved to about 13% when there was an increase of 20% in the content of support.
- Wakker JP, Gerritsen AW, Moulijn JA, Ind. Eng. Chem. Res., 32(1), 139 (1993)
- Schrodt JT, Hilton GB, Rogge CA, Fuel, 54(4), 269 (1975)
- Tamhankar SS, Wen CY, High-Temperature Hydrogen Sulfide Removal using a Regenerable Iron Oxide Sorbent, American Chemical Society, Symposium Series, 223, 255 (1983)
- Patrick V, Gavalas GR, Sharma PK, Ind. Eng. Chem. Res., 32(3), 519 (1993)
- Pham-Huu C, Estournes C, Heinrich B, Ledoux MJ, J. Chem. Soc.-Faraday Trans., 94(3), 435 (1998)
- Phamhuu C, Delgallo P, Peschiera E, Ledoux MJ, Appl. Catal. A: Gen., 132(1), 77 (1995)
- Cuong PH, Marin S, Ledoux MJ, Weibel M, Ehret G, Benaissa M, Peschiera E, Guille J, Appl. Catal. B: Environ., 4(1), 45 (1994)
- Li KT, Yen CS, Shyu NS, Appl. Catal. A: Gen., 156(1), 117 (1997)
- Kang SH, Rhee YW, Kang Y, Han KH, Yi CK, Jin GT, Son JE, Park YS, Energy Eng. J., 5(2), 123 (1996)
- Lee SO, Kim SK, Oh JK, Shin BS, J. Mineral Energy Resources, 35(6), 520 (1998)
- Christoforou SC, Efthimiadis EA, Vasalos IA, Ind. Eng. Chem. Res., 34(1), 83 (1995)
- German RM, Sintering Theory and Practice, 477, Wiley-Interscience Publication, New York (1996)
- Kyotani T, Kawashima H, Tomita A, Palmer A, Furimsky E, Fuel, 68(1), 74 (1989)
- Lee CM, Yoon YI, Kim SH, J. Korean Ind. Eng. Chem., 10(2), 183 (1999)