화학공학소재연구정보센터
Journal of Chemical Physics, Vol.121, No.2, 726-736, 2004
A multidimensional discrete variable representation basis obtained by simultaneous diagonalization
Direct product basis functions are frequently used in quantum dynamics calculations, but they are poor in the sense that many such functions are required to converge a spectrum, compute a rate constant, etc. Much better, contracted, basis functions, that account for coupling between coordinates, can be obtained by diagonalizing reduced dimension Hamiltonians. If a direct product basis is used, it is advantageous to use discrete variable representation (DVR) basis functions because matrix representations of functions of coordinates are diagonal in the DVR. By diagonalizing matrices representing coordinates it is straightforward to obtain the DVR that corresponds to any direct product basis. Because contracted basis functions are eigenfunctions of reduced dimension Hamiltonians that include coupling terms they are not direct product functions. The advantages of contracted basis functions and the advantages of the DVR therefore appear to be mutually exclusive. A DVR that corresponds to contracted functions is unknown. In this paper we propose such a DVR. It spans the same space as a contracted basis, but in it matrix representations of coordinates are diagonal. The DVR basis functions are chosen to achieve maximal diagonality of coordinate matrices. We assess the accuracy of this DVR by applying it to model four-dimensional problems. (C) 2004 American Institute of Physics.