Journal of Chemical Physics, Vol.121, No.2, 783-791, 2004
Nonadiabatic alignment of asymmetric top molecules: Rotational revivals
The rotational revival structure of asymmetric top molecules, following irradiation by an intense picosecond laser pulse, is explored theoretically and experimentally. Numerically we solve nonperturbatively for the rotational dynamics of a general asymmetric top subject to a linearly polarized intense pulse, and analyze the dependence of the dynamical alignment on the field and system parameters. Experimentally we use time-resolved photofragment imaging to measure the alignment of two molecules with different asymmetry, iodobenzene, and iodopentafluorobenzene. Our numerical results explain the experimental observations and generalize them to other molecules. The rotational revival structure of asymmetric tops differs qualitatively from the intensively studied linear top case. Potentially it provides valuable structural information about molecules. (C) 2004 American Institute of Physics.