Journal of Chemical Physics, Vol.121, No.5, 2253-2263, 2004
Photodissociation of ICN at the liquid/vapor interface of water
The photodissociation of ICN adsorbed at the liquid/vapor interface of water is studied using classical molecular dynamics with nonadiabatic surface hopping. The cage escape, geminate recombination to form ICN and INC and the subsequent vibrational relaxation of these two molecules (on their ground electronic states) is compared with the same process in bulk water and with previous photodissociation studies at liquid interfaces. We find that the reduced surface density and weaker solvent-solute interactions give rise to reduced rate of nonadiabatic transitions and that the probability for cage escape at the interface is significantly enhanced due to the possibility that one or both of the photodissociation fragments desorb into the gas phase. The overall desorption probability varies from 75% to 92% for ICN initially located just below the Gibbs surface (50% bulk density) to ICN located just above the Gibbs surface, respectively. The corresponding geminate recombination probabilities are 18% and 9%, respectively. The vibrational relaxation rate of the recombined ICN is slower than in the bulk by a factor of 2.3. (C) 2004 American Institute of Physics.