Journal of the American Chemical Society, Vol.126, No.28, 8777-8785, 2004
Direct catalytic asymmetric Mannich-type reaction of hydroxyketone using a Et2Zn/Linked-BINOL complex: Synthesis of either anti- or syn-beta-amino alcohols
Full details of a direct catalytic asymmetric Mannich-type reaction of a hydroxyketone using a Et2Zn/(S,S)-linked-BINOL complex are described. By choosing the proper protective groups on imine nitrogen, either anti- or syn-beta-amino alcohol was obtained in good diastereomeric ratio, yield, and excellent enantiomeric excess using the same zinc catalysis. N-Diphenylphosphinoyl (Dpp) imine 3 gave anti-beta-amino alcohols in anti/syn = up to >98/2, up to >99% yield, and up to >99.5% ee, while Boc-imine 4 gave syn-beta-amino alcohols in anti/syn = up to 5/95, up to >99% yield, and up to >99.5% ee. The high catalyst turnover number (TON) is also noteworthy. Catalyst loading was successfully reduced to 0.02 mol % (TON = up to 4920) for the anti-selective reaction and 0.05 mol % (TON = up to 1760) for the syn-selective reaction. The Et2Zn/(S,S)-linked-BINOL complex exhibited far better TON than in previous reports of catalytic asymmetric Mannich-type reactions. Mechanistic studies to clarify the reason for the high catalyst efficiency as well as transformations of Mannich adducts are also described.