화학공학소재연구정보센터
Macromolecular Research, Vol.12, No.5, 466-473, October, 2004
A Kinetic Study of Thermal Degradations of Chitosan/Polycaprolactam Blends
E-mail:
We have used FT-IR spectra to explain the effects of hydrogen bonding between chitosan and polycaprolactam (PA6). A dynamic mechanical analysis study suggested that the optimum chitosan and PA6 miscibility under the conditions of this experiment were obtained at a blending ratio of 40:60. We studied the thermal degradation of chitosan blended with PA6 (chitosan/PA6) by thermogravimetric analysis and kinetic analysis (by the Ozawa method). Dry chitosan and PA6 exhibited a single stage of thermal degradation and chitosan/PA6 blends having >20 wt% PA6 exhibited at least two stages of degradation. In chitosan/PA6 blends, chitosan underwent the first stage of thermal degradation; the second stage proceeded at a temperature lower than that of PA6, because the decomposition product of chitosan accelerated the degradation of PA6. The activation energies of the blends were between 130 and 165 kJ/mol, which are also lower than that of PA6.
  1. Hasegawa M, Isogai A, Onabe F, Usuda M, Atalla R, J. Appl. Polym. Sci., 45, 1873 (1992) 
  2. Shalaby SW, Biomedical Polymers, Carl Hanser Verlag, New York (1994)
  3. Bartnicki-Garcia S, Nickerson WJ, Biochim Biophys. Acta., 5, 102 (1962) 
  4. Aiba S, Makromol. Chem., 194, 65 (1993) 
  5. Muzzarelli RAA, Natural Chelating Polymers, Pergamon, New York (1973)
  6. Muzzarelli RAA, Pariser ER, Proceeding of First Internation Conference on Chitin/Chitosan, MIT Sea Grant Report MITSG 78-7, May (1978)
  7. Bough WA, Food Product Development, 11, 90 (1977)
  8. Rathke TD, Hudson Am, Rev. Macromol. Chem. Phys., C34, 375 (1994)
  9. Hosokawa J, Food Packag, 2, 38 (1990)
  10. Muzzarelli R, Bjagini G, Rizzoli C, Biomaterials, 10, 598 
  11. Miya M, Yoshikawa S, Lwamoto R, Mima S, Koubun Shi Rombunshu, 40, 645 (1983)
  12. Samuels RJ, J. Polym. Sci. Polym. Phy. Ed.,, 19, 1081 (1981) 
  13. Ratto JA, Chen CC, Blumstein RB, J. Appl. Polym. Sci., 59(9), 1451 (1996) 
  14. Hosokawa J, NishiyamaYoshihara K, Kubo T, Terabe A, Ind. Eng. Chem. Res., 30, 788 (1991) 
  15. Tirkistani FAA, Polym. Degrad. Stabil., 60, 67 (1998) 
  16. Sreenivasan K, Polym. Degrad. Stabil., 52, 85 (1996) 
  17. Ikejima T, Yogi K, Inonu Y, Macromol. Chem. Phys., 200, 413 (1999) 
  18. Qu X, Wirsen A, Albertsson AC, Polymer, 41(13), 4841 (2000) 
  19. Gijsman P, Steenbakkers R, Furst C, Kersjes J, Polym. Degrad. Stabil., 78, 219 (2002) 
  20. Gonzalez J, Albano C, Sciamanna R, Ichazo M, Rosales C, Martinez J, Candal M, Polym. Degrad. Stabil., 68, 9 (2000) 
  21. Ozawa T, Bull. Chem. Soc. Jpn., 38, 1881 (1965) 
  22. Ozawa T, J. Thermal. Anal., 7, 601 (1975) 
  23. Gonzalez V, Guerrero C, Ortiz U, J. Appl. Polym. Sci., 78(4), 850 (2000) 
  24. Cardenas G, Paredes JC, Cabrera G, Casals P, J. Appl. Polym. Sci., 86(11), 2742 (2002) 
  25. Carlos PC, Waldo AM, Roman JS, Polym. Degrad. Stabil., 39, 21 (1993) 
  26. Kim SS, Kim SH, Lee YM, J. Polym. Sci. B: Polym. Phys., 34(14), 2367 (1996) 
  27. Langer NM, Wilkie CA, Polym. Adv. Technol., 9, 290 (1998) 
  28. Costa DA, Oliveira CMF, J. Appl. Polym. Sci., 81(10), 2556 (2001) 
  29. Starkweather HW, John R, Barkley EI, J. Polym. Sci. B: Polym. Phys., 19, 1211 (1981)
  30. Garcia I, Peniche C, Nieto JM, J. Thermal Anal., 21, 189 (1983) 
  31. Bockhorn H, Hornung A, Hornung U, Weichmann J, Thermochim. Acta, 337(1-2), 97 (1999) 
  32. Czegeny Z, Jakab E, Blazso M, Macromol. Mater. Eng., 287, 277 (2002) 
  33. Fukatsu K, Polym. Degrad. Stabil., 75, 479 (2002) 
  34. Lu MG, Lee JY, Shim MJ, Kim SW, J. Appl. Polym. Sci., 85(12), 2552 (2002) 
  35. Lu MG, Shim MJ, Kim SW, J. Appl. Polym. Sci., 75(12), 1514 (2000)