Macromolecular Research, Vol.12, No.5, 466-473, October, 2004
A Kinetic Study of Thermal Degradations of Chitosan/Polycaprolactam Blends
E-mail:
We have used FT-IR spectra to explain the effects of hydrogen bonding between chitosan and polycaprolactam (PA6). A dynamic mechanical analysis study suggested that the optimum chitosan and PA6 miscibility under the conditions of this experiment were obtained at a blending ratio of 40:60. We studied the thermal degradation of chitosan blended with PA6 (chitosan/PA6) by thermogravimetric analysis and kinetic analysis (by the Ozawa method). Dry chitosan and PA6 exhibited a single stage of thermal degradation and chitosan/PA6 blends having >20 wt% PA6 exhibited at least two stages of degradation. In chitosan/PA6 blends, chitosan underwent the first stage of thermal degradation; the second stage proceeded at a temperature lower than that of PA6, because the decomposition product of chitosan accelerated the degradation of PA6. The activation energies of the blends were between 130 and 165 kJ/mol, which are also lower than that of PA6.
- Hasegawa M, Isogai A, Onabe F, Usuda M, Atalla R, J. Appl. Polym. Sci., 45, 1873 (1992)
- Shalaby SW, Biomedical Polymers, Carl Hanser Verlag, New York (1994)
- Bartnicki-Garcia S, Nickerson WJ, Biochim Biophys. Acta., 5, 102 (1962)
- Aiba S, Makromol. Chem., 194, 65 (1993)
- Muzzarelli RAA, Natural Chelating Polymers, Pergamon, New York (1973)
- Muzzarelli RAA, Pariser ER, Proceeding of First Internation Conference on Chitin/Chitosan, MIT Sea Grant Report MITSG 78-7, May (1978)
- Bough WA, Food Product Development, 11, 90 (1977)
- Rathke TD, Hudson Am, Rev. Macromol. Chem. Phys., C34, 375 (1994)
- Hosokawa J, Food Packag, 2, 38 (1990)
- Muzzarelli R, Bjagini G, Rizzoli C, Biomaterials, 10, 598
- Miya M, Yoshikawa S, Lwamoto R, Mima S, Koubun Shi Rombunshu, 40, 645 (1983)
- Samuels RJ, J. Polym. Sci. Polym. Phy. Ed.,, 19, 1081 (1981)
-
Ratto JA, Chen CC, Blumstein RB, J. Appl. Polym. Sci., 59(9), 1451 (1996)
- Hosokawa J, NishiyamaYoshihara K, Kubo T, Terabe A, Ind. Eng. Chem. Res., 30, 788 (1991)
- Tirkistani FAA, Polym. Degrad. Stabil., 60, 67 (1998)
- Sreenivasan K, Polym. Degrad. Stabil., 52, 85 (1996)
- Ikejima T, Yogi K, Inonu Y, Macromol. Chem. Phys., 200, 413 (1999)
-
Qu X, Wirsen A, Albertsson AC, Polymer, 41(13), 4841 (2000)
- Gijsman P, Steenbakkers R, Furst C, Kersjes J, Polym. Degrad. Stabil., 78, 219 (2002)
- Gonzalez J, Albano C, Sciamanna R, Ichazo M, Rosales C, Martinez J, Candal M, Polym. Degrad. Stabil., 68, 9 (2000)
- Ozawa T, Bull. Chem. Soc. Jpn., 38, 1881 (1965)
- Ozawa T, J. Thermal. Anal., 7, 601 (1975)
-
Gonzalez V, Guerrero C, Ortiz U, J. Appl. Polym. Sci., 78(4), 850 (2000)
-
Cardenas G, Paredes JC, Cabrera G, Casals P, J. Appl. Polym. Sci., 86(11), 2742 (2002)
- Carlos PC, Waldo AM, Roman JS, Polym. Degrad. Stabil., 39, 21 (1993)
-
Kim SS, Kim SH, Lee YM, J. Polym. Sci. B: Polym. Phys., 34(14), 2367 (1996)
- Langer NM, Wilkie CA, Polym. Adv. Technol., 9, 290 (1998)
-
Costa DA, Oliveira CMF, J. Appl. Polym. Sci., 81(10), 2556 (2001)
- Starkweather HW, John R, Barkley EI, J. Polym. Sci. B: Polym. Phys., 19, 1211 (1981)
- Garcia I, Peniche C, Nieto JM, J. Thermal Anal., 21, 189 (1983)
-
Bockhorn H, Hornung A, Hornung U, Weichmann J, Thermochim. Acta, 337(1-2), 97 (1999)
- Czegeny Z, Jakab E, Blazso M, Macromol. Mater. Eng., 287, 277 (2002)
- Fukatsu K, Polym. Degrad. Stabil., 75, 479 (2002)
-
Lu MG, Lee JY, Shim MJ, Kim SW, J. Appl. Polym. Sci., 85(12), 2552 (2002)
-
Lu MG, Shim MJ, Kim SW, J. Appl. Polym. Sci., 75(12), 1514 (2000)