화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.42, No.5, 545-550, October, 2004
고압상태에서 이산화탄소가 포함된 이성분계 혼합용매에 대한 Poly(L-lactide)와 Polycaprolactone의 상거동
Phase Behavior of Poly(L-lactide) and Polycaprolactone in Binary Mixtures including CO2 at High Pressure
E-mail:
초록
본 연구에서는 variable volume view cell이 장착된 상평형 장치를 사용하여 고압 상태의 다양한 용매내에서 생분해성 고분자인 poly(L-lactide)(PLA)와 polycaprolactone(PCL)의 cloud point를 측정하였다. 이때 사용된 용ㅇ매는 HCFC-22, DME(dimethylether)이였으며, 이들 용매에 CO2를 첨가한 HCFC-22+CO2와 DME+CO2의 이성분계 혼합용매에서 CO2의 조성이 변화함에 의해 이 용매내에서 poly(L-lactide)와 polycaprolactone의 상거동에 미치는 영향을 살펴보았다. Poly(L-lactide)의 경우, HCFC-22에 대해 온도 범위가 344-393 K일 때, 4.0-15.0 MPa의 비교적 낮은 압력에서 잘 용해되었으며 HCFC-22와 여기에 CO2를 첨가한 HCFC-22+CO2 혼합용매 모두에서 LCST(lower critical solution temperature)의 상거동을 보여주었다. Polycaprolactone의 경우는 DME와 HCFC-22에 대해 온도 범위가 310-415 K일 때, 각각 압력 범위 13-37 MPa과 3-27 MPa에서 비교적 잘 용해되었으며, DME와 HCFC-22 및 CO2를 첨가한 HCFC-22+CO2와 DME+CO2의 이성분계 혼합용매에서 poly(L-lactide)와 마찬가지로 모두 LCST의 상거동을 보여주었다. CO2 혼합용매내에서 두 물질의 cloud point 압력은 동일한 온도에서 첨가되는 CO2의 양에 비례하여 높아지는 것을 관찰할 수 있었고, 이로서 CO2가 DME와 HCFC-22에 대해 역용매로 사용될 수 있다는 것을 확인할 수 있었다. 또한 CO2의 농도를 변화시킴으로써 poly(L-lactide)와 polycaprolactone의 cloud point를 자유롭게 조절할 수 있다는 것을 알 수 있었다.
We measured cloud points using the high-pressure variable volume cell apparatus for poly(L-lactide)(L-PLA) and polycaprolactone(PCL) in various solvents. The solvents used for dissolving poly(L-lactide) and polycaprolactone were HCFC-22(chlorodifluoromethane) and DME(dimethylether), HCFC-22+CO2, and DME+CO2. In case of L-PLA, it was dissolved well in HCFC-22 in the pressure range 4.0-15.0 MPa and the temperature range 344-393 K, and exhibited LCST(lower critical solution temperature) behavior in HCFC-22 and HCFC-22+CO2. In case of polycaprolactone, it was dissolved well in DME and HCFC-22 in the pressure range 13-37 MPa and 3-27 MPa respectively, in the range 310-415 K, and also exhibited LCST behavior in DME, HCFC-22, HCFC-22+CO2, and DME+CO2. The cloud point pressure of both poly(L-lactide) and polycaprolactone increased proportionally to the amount of CO2 added at the same temperature. According to these results, it was known that CO2 could be used as an anti-solvent, and the cloud point of poly(L-lactide) and polycaprolactone could be controlled by changing the concentration of CO2.
  1. Angus S, Armstrong B, de Reuck KM, International Thermodynamic Tables of the Fluid State (CO2), pergamon press (1976)
  2. Zhao X, Watkins R, Barton SW, J. Appl. Polym. Sci., 55(5), 773 (1995) 
  3. Kajimoto O, Chem. Rev., 99(2), 355 (1999) 
  4. Tucker SC, Chem. Rev., 99(2), 391 (1999) 
  5. Subramaniam B, Rajewski RA, Snavely K, J. of Pharmaceutical Sciences, 86, 885 (1997) 
  6. Subramaniam B, Rajewski RA, Snavely K, J. of Pharmaceutical Sciences, 86(8), 885 (1997) 
  7. Lee YW, HWAHAK KONGHAK, 41(6), 679 (2003)
  8. Hanney JB, Hogarht J, Proc. Roy. Soc., 29(3), 324 (1879)
  9. Gallagher PM, Coffey MP, Krukonis VJ, Klasutis N, Johnston KP, Penninger JML, (eds.), Supercritical Fluid Science and Technology, ACS Symposium Series 406, ACS, Washington DC, 334 (1989)
  10. McHugh MA, Krukonis VJ, Supercritical Fluid Extraction: Principles and Practice, 2nd ed., Butterworth-Heinemann, Boston (1994)
  11. Lee JM, Lee BC, Lee SH, J. Chem. Eng. Data, 45(5), 851 (2000) 
  12. Lee JM, Lee BC, Hwang SJ, J. Chem. Eng. Data, 45(6), 1162 (2000) 
  13. McLinden M, Klein S, Lemmon E, Peskin A, NIST Thermodynamic and Transport Properties of Refrigerants and Refrigerant Mixtures Database(REFPROP), Ver. 6.01, National Institute of Standards and Technology, Gaithersburg, Maryland (1998)
  14. Reid RC, Prausnitz JM, Poling BE, The Properties of Gases and Liquids, McGraw-Hill, New York (1987)