화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.15, No.7, 760-767, November, 2004
마이크로파에 의하여 조사된 Oil-water 에멀젼의 온도 예상
The Temperature Prediction of Microwaved Oil-Water Emulsions
E-mail:
초록
가열에 의한 에멀젼의 분리시 정확한 가열 온도의 예상은 분리된 에멀젼이 과열로 인하여 재 에멀젼화[1]되는 것을 방지할 수 있으며, 또한 과잉의 소비 에너지를 감소시킴으로 경제적 효율을 높일 수 있을 것으로 기대된다. 본 연구에서는 마이크로파 조사에 의하여 가열된 에멀젼 내부의 승온 특성과 에너지 변화량을 수치 모사(computational simulation)를 이용하여 이론적으로 예상하고, 실험에 의하여 얻어진 값들과 비교 검토 하였다. 수치 모사에 의하여 예상된 에멀젼의 온도와 실험 값들 사이의 오차는 에멀젼의 상층과 하층보다 중간층에서 상대적으로 높게 나타났다. 마이크로파 조사에 의하여 가열된 에멀젼 각각의 평균 온도와 수치 모사에 의한 예상 온도 사이에는 30% 미만의 오차를 나타내었다.
As emulsions are separated by heating, the prediction of accurate heating temperature can prevent reemulsification by overheating from separated emulsions, making it to reduce the consumption of energy. In this work, computational simulation was performed to predict changes in temperature and absorption energy in microwaved emulsions. The results were compared with the experimentally measured temperatures. The deviation of predicted values and measured values exist larger in middle layers than in top or in bottom layers. The calculated temperatures of microwaved emulsions were predicted within 30% deviations compared to the experimental values.
  1. Fang CS, Lai PMC, Chang BKL, Klaila WJ, Environ. Prog., 8, 235 (1989)
  2. Little RC, Patterson RL, Environ. Sci. Technol., 12, 584 (1978) 
  3. Arnold K, Stewart M, Surface Production Operation, 1, Gulg Pub. Co., Huston (1986)
  4. Pal R, Masliyah J, AOSTRA J. Res., 7, 155 (1991)
  5. Fang CS, Chang BKL, Lai PMC, Klaila WJ, Chem. Eng. Commun., 73, 227 (1988)
  6. Johnk CTA, Engineering electromagnetic fields and waves, John Wiley, New York (1975)
  7. Decareau RV, Microwave in the food processing industry, Academic Press, New York (1985)
  8. Osepchuk JM, IEEE Trans. Microwave Theory Tech., MTT-32, 1200 (1984)
  9. Decareau RV, Peterson RA, Microwave Processing and engineering, Ellis Horwood, England (1986)
  10. Weast RC, Handbook of chemistry and Physics, 49th ed., Chemical Rubber Co., Cleveland (1968)
  11. Tinga WR, Nelson SO, J. Micro. Power, 8, 23 (1973)
  12. Smyth CP, Dielectric Behavior and Structure, McGraw-Hill Publishing, New York (1978)
  13. Mudgett RE, Food Tech., 36, 109 (1982)
  14. Singh RP, Sinha CP, J. Chem. Eng. Data, 31, 474 (1985) 
  15. Ritzoulis G, Papadopoulos N, Jannakoudakis D, J. Chem. Eng. Data, 31, 146 (1986) 
  16. Vonhippel AR, Dielectric Materials and Applications, MIT Press, Cambridge (1995)
  17. Mudgett RE, Wang DIC, Goldblith SA, J. Food Sci., 39, 632 (1974)
  18. Erle U, Regier M, Persch C, Schubert H, J. Microwave Power & Electromagnetic Energy, 35(3), 185 (2000)
  19. National Bureau of standards, Thermal Properties of Petroleum Products, Miscellaneous Publication 97, Washington (1997)
  20. Stuchly SS, Hamid MAK, J. Micro. Power, 7, 117 (1972)
  21. Atkins PW, Physical Chemistry, 5th ed., Oxford University Press, Oxford (1994)
  22. Fang CS, Lai PMC, J. Microwave Power & Electromagnetic Energy, 30, 46 (1995)
  23. Lin YE, Anantheswaran RC, Puri VM, J. Food Eng., 25, 85 (1995) 
  24. Yang HW, Gunasekaran S, J. Food Sci., 66, 998 (2001) 
  25. Ayappa KG, Davis HT, Davis EA, Gordon J, AIChE J., 38, 1577 (1992) 
  26. Welty JR, Wicks CE, Wilsion RE, Fundamentals of Momentum, Heat, and Mass Transfer, 3rd ed., Wiley, New York (1983)
  27. Chapra SC, Canale RP, Numerical Methods for Engineers, 3rd ed., McGraw_Hill, New York (1998)
  28. Lenore SE, Arnold EG, Andrew DE, Andrew, Standard Method for the Examination of water and wastewater, 20th ed., Am. Pub. Health Assoc., Washington (1998)