화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.10, No.6, 1025-1032, November, 2004
Adsorption Kinetics of Anionic Surfactants onto Activated Carbon in Fixed-bed
E-mail:
A fixed-bed adsorption column was modeled mathematically using a plug-flow heterogeneous surface diffusion model (PFHSDM) representing the axial dispersed plug-flow, external mass transfer, adsorption equilibrium on the fluid-particle interface, and intraparticle diffusion. The equations were solved simultaneously using the Newton-Raphson method and the finite element method. The external mass transfer coefficients and the surface diffusion coefficients of octanoic acid and dodecanoic acid onto activated carbon were determined respectively from the PFHSDM on a singlecomponent adsorption. THe longer molecular dimension of the anionic surfactant led to a faster external mass transfer rate onto the activated carbon, but a slower surface diffusion rate inside its narrow pores. Using the extended Langmuir isotherm for binary component adsorption, the estimated kinetic coefficients of the two anionic surfactants agreed remarkably well with those of the single-component adsorption. Also they were applied to a differential column batch reactor system to predict the concentration level required for the optimal design and operation of the system.
  1. Pavan PC, Crepaldi EL, Valim JB, J. Colloid Interface Sci., 229(2), 346 (2000)
  2. Hoeft CE, Zollars RL, J. Colloid Interface Sci., 177(1), 171 (1996)
  3. Hind AR, Bhargava SK, Grocott SC, Colloids Surf. A: Physicochem. Eng. Asp., 146, 359 (1999)
  4. Alcoa Annual Report, www.alcoa.com.Alcoa (1998)
  5. Lopez-Cortes A, Ochoa JL, Elsevier, Amsterdam (1999)
  6. Paxeus N, Water Res., 30, 1115 (1996)
  7. Sikiric M, Filipovic-Vincekovic N, Babic-Ivancic V, Vdovic N, Furedi-Milhofer H, J. Colloid Interface Sci., 212(2), 384 (1999)
  8. Pavan PC, Crepaldi EL, Gomes GA, Valim JB, Colloids Surf., 154, 399 (1999) 
  9. Garcia-Delgado RA, Cotoruelo LM, Rodriguez JJ, Sep. Sci. Technol., 27, 1065 (1992)
  10. Kipling JJ, Adsorption from Solutions of Non-Electrolytes, Academic Press, London (1965)
  11. Vanjara AK, Dixit SG, Langmuir, 11(7), 2504 (1995)
  12. Scamehorn JF, Schechter RS, Wade WH, J. Colloid Interface Sci., 85, 463 (1982)
  13. Huang H, Somasundaran P, Colloids Surf. A: Physicochem. Eng. Asp., 117, 235 (1996)
  14. Brown W, Zhao J, Macromolecules, 26, 2711 (1993)
  15. Yoshio I, Suzawa T, Bull. Chem. Soc. Jpn., 43, 3364 (1970)
  16. Wu SH, Pendleton P, J. Colloid Interface Sci., 243(2), 306 (2001)
  17. Park JW, Lee YW, Choi DK, Lee SS, J. Ind. Eng. Chem., 9(4), 381 (2003)
  18. Kim TY, Kim SJ, Cho SY, J. Ind. Eng. Chem., 10(2), 188 (2004)
  19. Li FS, Yuasa A, Ebie K, Azuma Y, J. Colloid Interface Sci., 262(2), 331 (2003)
  20. Baup S, Jaffre C, Wolbert D, Laplanche A, Adsorption, 6, 219 (2000)
  21. Komiyama H, Smith JM, AIChE J., 20, 1110 (1974)
  22. Sontheimer H, Crittenden JC, Summers RS, Activated Carbon for Water Treatment, pp. 363, DVGW-Forschungsstelle, U.S.A. (1988)
  23. Jeong YO, Ph. D. Thesis, Pukyong National University, Korea (1989)
  24. Kim JH, Ph. D. Thesis, Pukyong National University, Korea (2003)
  25. Wu SH, Ph.D. Thesis, University of South Australia, South Australia, Australia (2002)
  26. Wakao N, Funazkri T, Chem. Eng. Sci., 33, 1375 (1978)
  27. Seader J, Henley M, Separation Process Principles, Wiley, New York, USA (1998)
  28. Considine R, Denoyel R, Pendleton P, Schumann R, Wong SH, Colloids Surf. A: Physicochem. Eng. Asp., 179, 271 (2001)
  29. Pendleton P, Wu SH, Badalyan A, J. Colloid Interface Sci., 246(2), 235 (2002)
  30. Butler JAV, Ockrent C, J. Phys. Chem., 34, 2841 (1930)