화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.15, No.8, 947-951, December, 2004
Sodium Argininate를 함유하는 poly(acrylamide) 수화 겔의 제조 및 약물 방출 특성 연구
Preparation of Poly(acrylamide) Hydrogels Containing Sodium Argininate and Their Drug Releas Characteristics
E-mail:
초록
Sodium-argininate를 함유하는 폴리아크릴아미드(PAAm) 수화 겔을 제조하고 pH 변화에 따른 팽윤 특성과 약물방출 특성을 조사하였다. 수화 겔의 팽윤 실험을 다양한 pH 용액 및 모사위액(simulated gastro fluids: SGF)과 모사장액(simulated intestinal fluids: SIF) 조건에서 수행하였다. 그 결과 수화 겔은 pH 6 영역에서 최대의 팽윤도를 나타내었다. 또한 항염증제로 알려진 5-aminosalicylic acid를 모델 약물로 사용하여 SGF와 SIF 용액에서 약물방출 실험한 결과, 본 연구의 약물전달계는 SIF에서의 약물방출이 더 효율적임을 확인할 수 있었다.
Polyacrylamide hydrogels containing sodium L-argininate were synthesized and their swelling behavior and drug release characteristics were investigated. Swelling behavior of the hydrogel was studied not only in various pH conditions but also in the simulated physiological fluids [simulated gastric fluid (SFG) and simulated intestinal fluid (SIF)]. The hydrogel showed a maximum degree of swelling in a phosphate buffer of physiological pH 6. Drug release experiments were performed in SGF and SIF conditions using 5-aminosalisylic acid as a model drug. The drug release data suggested that the present drug delivery system is more efficient in SIF condition.
  1. Gehrke SH, Lee PI, Hydrogels for Drug Delivery Systems. In Specialized Drug Delivery Systems, P. Tyle, ed. Marcel Dekker, 333 (1990)
  2. Peppas NA, Mikos AG, Hydrogels in Medicine and Pharmacy, CRC Press, Boca Raton, FL (1987)
  3. Qiu Y, Park K, Adv. Drug Deliv. Rev., 53, 321 (2001) 
  4. Gupta P, Vermani K, Garg S, Drug Discov. Today, 7, 569 (2002) 
  5. Tanaka T, Fillmore D, Sun ST, Nishio I, Swislow G, Shah A, Phys. Rev. Lett., 45, 1636 (1980) 
  6. Peppas LB, Peppas NA, Chem. Eng. Sci., 46, 715 (1991) 
  7. Hirokawa Y, Tanaka T, Sato E, Macromolecules, 18, 2782 (1985) 
  8. Akashi M, Saihata S, Yashima E, Suita S, Marumo K, J. Polym. Sci. B: Polym. Phys., 31, 1153 (1993)
  9. Chujo Y, Sada K, Matumoto K, Saegusa T, Macromolecules, 23, 1234 (1990) 
  10. Lee YT, Lee SK, Jeong DS, Polym.(Korea), 22(5), 741 (1998)
  11. Tung CH, Weissleder R, Adv. Drug Deliv. Rev., 55, 281 (2003) 
  12. Jee KS, Kim YS, Park KD, Kim YH, Biomaterials, 24, 3409 (2003) 
  13. Kopecek J, Eur. J. Pharm. Sci., 20, 1 (2003) 
  14. Katayama S, J. Phys. Chem., 96, 5029 (1992)
  15. Gehrke ST, Clussler EL, Chem. Eng. Sci., 44, 3 (1989)
  16. Tanaka T, Phys. Rev. Lett., 40, 820 (1978) 
  17. Hirokawa Y, Tanaka T, Sato E, Macromolecules, 18, 2782 (1985) 
  18. Inman JK, Dintzis HM, Biochemistry, 8, 4074 (1969) 
  19. Chandy MC, Pillai VNR, Polymer, 36, 1038 (1995)
  20. Kasgoz H, Ozgumus S, Orbay M, Polymer, 44(6), 1785 (2003) 
  21. Omidian H, Zohuriaan-Mehr MJ, Polymer, 43(2), 269 (2002) 
  22. Zhang XZ, Wu DQ, Chu CC, Biomaterials, 25, 3793 (2004) 
  23. Ricka J, Tanaka T, Macromolecules, 17(12), 2916 (1984)