Korean Journal of Chemical Engineering, Vol.22, No.1, 46-51, January, 2005
Structural and Electrochemical Characteristics of Li0.7[Li1/6Mn5/6]O2 Synthesized using Sol-Gel Method
E-mail:
Layered O2-lithium manganese oxide (O2-Li0.7[Li1/6Mn5/6]O2) was prepared by ion-exchange of P2-sodium manganese oxide (P2-Na0.7[Li1/6Mn5/6]O2). P2-Na0.7[Li1/6Mn5/6]O2 precursor was first synthesized by using a sol-gel method, and then O2- Li0.7[Li1/6Mn5/6]O2 was produced by an ion exchange of Li for Na in the P2-Na0.7[Li1/6Mn5/6]O2 precursor. Structural and electrochemical analyses suggested that good quality O2-Li0.7[Li1/6Mn5/6]O2 was prepared from P2-Na0.7[Li1/6Mn5/6]O2 synthesized at 800 oC for 10 h using glycolic acid as a chelating agent. During the cycle, the discharge profile of the synthesized samples showed two plateaus at around 4 and 3 V, respectively, with a steep slope between the two plateaus. The discharge curve at 3 V escalated with an increase in the cycle number, presenting a phase transition from a layered to a spinel like structure. The sample prepared at 800 oC for 10 h using glycolic acid delivered a discharge capacity of 187 mAh/g with small capacity fading.
Keywords:Sol-Gel Method;Chelating Agent;Glycolic Acid;Adipic Acid;Layered Structure;Lithium-ion Battery
- Armstrong AR, Robertson AD, Bruce PG, Electrochim. Acta, 45(1-2), 285 (1999)
- Balsys J, Davis RL, Solid State Ion., 93, 279 (1996)
- Chen DH, He XR, Mater. Res. Bull., 36(7-8), 1369 (2001)
- Delmas C, Braconnier JJ, Hagenmuller P, Mater. Res. Bull., 17, 117 (1982)
- Delmas C, Braconnier JJ, Maazaz A, Hagenmuller P, Rev. Chim. Miner., 19, 343 (1982)
- Franger S, Bach S, Pereira-Ramos JP, Baffier N, J. Electrochem. Soc., 147(9), 3226 (2000)
- Guyomard D, Tarascon JM, Solid State Ion., 69(3-4), 222 (1994)
- Jang DH, Oh SM, J. Electrochem. Soc., 144(10), 3342 (1997)
- Jang DH, Shin YJ, Oh SM, J. Electrochem. Soc., 143(7), 2204 (1996)
- Jeong YU, Manthiram A, Electrochem. Solid State Lett., 2, 421 (1999)
- Kim J, Manthiram A, Electrochem. Solid State Lett., 1, 207 (1998)
- Lu Z, Dahn JR, Chem. Mater., 13, 1252 (2001)
- Lu Z, Dahn JR, Chem. Mater., 13, 2078 (2001)
- Lu Z, Donaberger RA, Dahn JR, Chem. Mater., 12, 3583 (2000)
- Ohuzuk T, Kitagawa M, Hirai T, J. Electrochem. Soc., 137, 769 (1990)
- Parant JP, Olazcuaga R, Devalette M, Fouassier C, Hagenmuller P, J. Solid State Chem., 3, 1 (1971)
- Park KS, Cho MH, Jin SJ, Song CH, Nahm KS, Korean J. Chem. Eng., 21(5), 983 (2004)
- Park SH, Park KS, Cho MH, Sun YK, Nahm KS, Lee YS, Yoshio M, Korean J. Chem. Eng., 19, 791 (2004)
- Park SH, Park KS, Moon SS, Sun YK, Nahm KS, J. Power Sources, 92(1-2), 244 (2001)
- Paulsen JM, Dahn JR, J. Electrochem. Soc., 147(7), 2478 (2000)
- Paulsen JM, Dahn JR, Solid State Ion., 126(1-2), 3 (1999)
- Paulsen JM, Larcher D, Dahn JR, J. Electrochem. Soc., 147(8), 2862 (2000)
- Paulsen JM, Thomas CL, Dahn JR, J. Electrochem. Soc., 146(10), 3560 (1999)
- Paulsen JM, Thomas CL, Dahn JR, J. Electrochem. Soc., 147(3), 861 (2000)
- Quine TE, Duncan MJ, Armstrong AR, Robertson AD, Bruce PG, J. Mater. Chem., 10, 2838 (2000)
- Sun YK, Jeon YS, Lee HJ, Electrochem. Solid State Lett., 3, 7 (2000)
- Thackeray MM, Prog. Solid State Chem., 25, 1 (1997)