화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.16, No.1, 52-60, February, 2005
저밀도 폴리에틸렌 나노복합재료의 제조 및 특성
Preparation and Properties of Low Density Polyethylene/Organo-clay Nanocomposite
E-mail:
초록
본 연구에서는 용융법에 의한 저밀도폴리에틸렌 나노복합재료를 제조하였으며, 구조변화, organo-clay의 분산정도, 열적 특성 및 난연 특성을 조사하였다. LDPE/PE-g-MA/organo-clay의 조성비가 90/10/1~10 (w/w/w)일 때, XRD 분석 결과 clay 층간간격이 증가함을 알 수 있었으며, TEM을 이용하여 organo-clay의 분산을 관찰하였는데, 대체적으로 organo-clay가 일정한 방향성을 가지며 잘 분산되어 있음을, 즉 삽입형(intercalation) 나노복합체가 형성되었음을 확인할 수 있었다. 또한 LDPE 나노복합재료의 분해온도가 순수한 LDPE에 비해 약 80 ℃ 정도 상승함으로써 열적특성이 현저히 증가함을 알 수 있었고, organo-clay 5.0 wt% 범위 내에서 organo-clay의 함량이 증가함에 따라 LOI가 증가함을, 그 이상에서는 더 이상의 LOI 증가를 보이지 않음을 알 수 있었다.
In this study, low density polyethylene/organo-clay nanocomposites were prepared by melt blending. Thermal property, structure, and morphology of the LDPE/organo-clay nanocomposites were investigated. When the composition ratios of the compounds of LDPE/PE-g-MA/organo-clay were 90/10/1~10 (w/w/w), X-ray diffractograms of LDPE/organo-clay nanocomposites revealed that the intercalation of polymer chains lead to increase the spacing between clay layers. TEM microphotographs showed that LDPE was intercalated into organo-clay. TGA performed under air atmosphere demonstrated a great increase in thermal stability of the LDPE/organo-clay nanocomposties. The maximum decomposition temperature of LDPE/organo-clay nanocomposite was increased about 80 ℃ compared with pure LDPE. When the organoclay contents were 1.0~5.0 wt%, the LOI values were increased with increasing the organo-clay content, but in the case of the contents more than 5.0 wt%, the LOI values were not increased any more.
  1. Lee JH, Yoo YJ, Cho KY, News Inf. Chem. Eng., 21, 376 (2003)
  2. LeBaro PC, Wang Z, Pinnavaia TJ, Appl. Clay Sci., 15, 11 (1999) 
  3. Giannelis EP, Adv. Mater., 8, 29 (1996) 
  4. Ko MB, Kim J, Polym. Sci. Technol., 10(4), 451 (1999)
  5. Krishnamoorti R, Vaia RA, Giannelis EP, Chem. Mater., 8, 1728 (1996) 
  6. Lagaly G, Solid State Ion., 22, 43 (1986) 
  7. Zanetti M, Costa L, Polymer, 45(13), 4367 (2004) 
  8. Kashiwagi T, Harris RH, Zhang X, Briber RM, Cipriano BH, Raghavan SR, Awad WH, Shields JR, Polymer, 45, 881 (2004) 
  9. Xu WB, Bao SP, He PS, J. Appl. Polym. Sci., 84(4), 842 (2002) 
  10. Fornes TD, Yoon PJ, Hunter DL, Keskkula H, Paul DR, Polymer, 43(22), 5915 (2002) 
  11. Liu XH, Wu QJ, Polymer, 42(25), 10013 (2001) 
  12. Alexandre M, Dubois P, Sun T, Garces JM, Jerome R, Polymer, 43(8), 2123 (2002) 
  13. Wang KH, Choi MH, Koo CM, Xu MZ, Chung IJ, Jang MC, Choi SW, Song HH, J. Polym. Sci. B: Polym. Phys., 40(14), 1454 (2002) 
  14. Gopakumar TG, Lee JA, Kontopoulou M, Parent JS, Polymer, 43(20), 5483 (2002) 
  15. Alexandre M, Beyer G, Chem. Mater., 13, 3830 (2001) 
  16. Riva A, Zanetti M, Braglia M, Camino G, Falqui L, Polym. Degrad. Stabil., 77, 299 (2002) 
  17. Porter D, Metcalfe E, Thomas MJK, Fire Mater., 24, 45 (2000) 
  18. Zhu J, Wilkie CA, Polym. Int., 49, 1158 (2002) 
  19. Zanetti M, Camino G, Canavese D, Morgan AB, Lamelas FJ, Wilkie CA, Chem. Mater., 14, 189 (2002) 
  20. Gilman JW, Appl. Clay. Sci, 15, 31 (1999) 
  21. Beyer G, Fire Mater., 25, 193 (2001) 
  22. Camino G, Maffezzoli A, Braglia M, Lazzaro MD, Zammarano M, Polym. Degrad. Stabil., 74, 457 (2001) 
  23. Moon SC, Choi JK, Jo BW, Elastomer, 38, 316 (2003)
  24. Park DK, Chang JH, Polym.(Korea), 24(3), 399 (2000)
  25. An YU, Chang JH, Park YH, Park JM, Polym.(Korea), 26(3), 381 (2002)
  26. Lan T, Kaviratna PD, Pinnavaia TJ, J. Phys. Chem. Solids, 57, 1005 (1996)