Journal of the Korean Industrial and Engineering Chemistry, Vol.16, No.1, 52-60, February, 2005
저밀도 폴리에틸렌 나노복합재료의 제조 및 특성
Preparation and Properties of Low Density Polyethylene/Organo-clay Nanocomposite
E-mail:
초록
본 연구에서는 용융법에 의한 저밀도폴리에틸렌 나노복합재료를 제조하였으며, 구조변화, organo-clay의 분산정도, 열적 특성 및 난연 특성을 조사하였다. LDPE/PE-g-MA/organo-clay의 조성비가 90/10/1~10 (w/w/w)일 때, XRD 분석 결과 clay 층간간격이 증가함을 알 수 있었으며, TEM을 이용하여 organo-clay의 분산을 관찰하였는데, 대체적으로 organo-clay가 일정한 방향성을 가지며 잘 분산되어 있음을, 즉 삽입형(intercalation) 나노복합체가 형성되었음을 확인할 수 있었다. 또한 LDPE 나노복합재료의 분해온도가 순수한 LDPE에 비해 약 80 ℃ 정도 상승함으로써 열적특성이 현저히 증가함을 알 수 있었고, organo-clay 5.0 wt% 범위 내에서 organo-clay의 함량이 증가함에 따라 LOI가 증가함을, 그 이상에서는 더 이상의 LOI 증가를 보이지 않음을 알 수 있었다.
In this study, low density polyethylene/organo-clay nanocomposites were prepared by melt blending. Thermal property, structure, and morphology of the LDPE/organo-clay nanocomposites were investigated. When the composition ratios of the compounds of LDPE/PE-g-MA/organo-clay were 90/10/1~10 (w/w/w), X-ray diffractograms of LDPE/organo-clay nanocomposites revealed that the intercalation of polymer chains lead to increase the spacing between clay layers. TEM microphotographs showed that LDPE was intercalated into organo-clay. TGA performed under air atmosphere demonstrated a great increase in thermal stability of the LDPE/organo-clay nanocomposties. The maximum decomposition temperature of LDPE/organo-clay nanocomposite was increased about 80 ℃ compared with pure LDPE. When the organoclay contents were 1.0~5.0 wt%, the LOI values were increased with increasing the organo-clay content, but in the case of the contents more than 5.0 wt%, the LOI values were not increased any more.
- Lee JH, Yoo YJ, Cho KY, News Inf. Chem. Eng., 21, 376 (2003)
- LeBaro PC, Wang Z, Pinnavaia TJ, Appl. Clay Sci., 15, 11 (1999)
- Giannelis EP, Adv. Mater., 8, 29 (1996)
- Ko MB, Kim J, Polym. Sci. Technol., 10(4), 451 (1999)
- Krishnamoorti R, Vaia RA, Giannelis EP, Chem. Mater., 8, 1728 (1996)
- Lagaly G, Solid State Ion., 22, 43 (1986)
- Zanetti M, Costa L, Polymer, 45(13), 4367 (2004)
- Kashiwagi T, Harris RH, Zhang X, Briber RM, Cipriano BH, Raghavan SR, Awad WH, Shields JR, Polymer, 45, 881 (2004)
- Xu WB, Bao SP, He PS, J. Appl. Polym. Sci., 84(4), 842 (2002)
- Fornes TD, Yoon PJ, Hunter DL, Keskkula H, Paul DR, Polymer, 43(22), 5915 (2002)
- Liu XH, Wu QJ, Polymer, 42(25), 10013 (2001)
- Alexandre M, Dubois P, Sun T, Garces JM, Jerome R, Polymer, 43(8), 2123 (2002)
- Wang KH, Choi MH, Koo CM, Xu MZ, Chung IJ, Jang MC, Choi SW, Song HH, J. Polym. Sci. B: Polym. Phys., 40(14), 1454 (2002)
- Gopakumar TG, Lee JA, Kontopoulou M, Parent JS, Polymer, 43(20), 5483 (2002)
- Alexandre M, Beyer G, Chem. Mater., 13, 3830 (2001)
- Riva A, Zanetti M, Braglia M, Camino G, Falqui L, Polym. Degrad. Stabil., 77, 299 (2002)
- Porter D, Metcalfe E, Thomas MJK, Fire Mater., 24, 45 (2000)
- Zhu J, Wilkie CA, Polym. Int., 49, 1158 (2002)
- Zanetti M, Camino G, Canavese D, Morgan AB, Lamelas FJ, Wilkie CA, Chem. Mater., 14, 189 (2002)
- Gilman JW, Appl. Clay. Sci, 15, 31 (1999)
- Beyer G, Fire Mater., 25, 193 (2001)
- Camino G, Maffezzoli A, Braglia M, Lazzaro MD, Zammarano M, Polym. Degrad. Stabil., 74, 457 (2001)
- Moon SC, Choi JK, Jo BW, Elastomer, 38, 316 (2003)
- Park DK, Chang JH, Polym.(Korea), 24(3), 399 (2000)
- An YU, Chang JH, Park YH, Park JM, Polym.(Korea), 26(3), 381 (2002)
- Lan T, Kaviratna PD, Pinnavaia TJ, J. Phys. Chem. Solids, 57, 1005 (1996)