화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.22, No.2, 303-314, March, 2005
Simulation of Particle Deposition on Filter Fiber in an External Electric Field
E-mail:
Particle deposition onto a filter fiber was numerically simulated when a uniform external electric field was applied. The effects of electric field strength, particle inertia, and electrical conductivity of particles on particle deposition characteristics such as particle loading patterns and collection efficiency were qualitatively investigated. As a result, the electrostatic forces between a newly introduced particle and the already captured particles on the fiber were found to have a great influence on the particle deposition patterns compared with the results where the electrostatic forces were neglected. Conductive particles and filter fibers lead to higher collection efficiency and more linear structure of particle deposits than those of dielectrics, and the particle inertia could also be more important to the collection efficiency of a fibrous filter when electric fields are present. The simulated particle deposits obtained from this work agreed well with the existing experimental results, in which the photographs of particle loaded fibers, within an external electric field, were reported.
  1. Auzerais F, Payatakes AC, Okuyama K, Chem. Eng. Sci., 38(3), 447 (1983) 
  2. Bai H, Lu C, Chang CL, J. Air Waste Manage. Assoc., 45, 908 (1995)
  3. Barot DT, Tien C, Wang C, AIChE J., 26(2), 289 (1980) 
  4. Baumgartner H, Loffler F, J. Aerosol Sci., 18(6), 885 (1987) 
  5. Havlicek V, Int. J. Air and Water Poll., 4, 225 (1961)
  6. Henry F, Ariman T, J. Aerosol Sci., 12(2), 91 (1981) 
  7. Hinds WC, Kadrichu NP, Aerosol Sci. Technol., 27, 162 (1997)
  8. Iinoya K, Makino K, Aerosol Science, 5, 357 (1974) 
  9. Jennings SG, J. Aerosol Sci., 19(2), 159 (1988) 
  10. Kanaoka C, Hiragi S, J. Aerosol Sci., 21(1), 127 (1990) 
  11. Kanaoka C, Emi H, Hiragi S, Myojo J, Morphology of Particulate Agglomerates on a Cylindrical Fiber and a Collection Effciency of a Dust Loaded Fiber, 2nd Int. Aerosol Conf., 674 (1986)
  12. Kao J, Tardos GI, Pfeffer R, IEEE Trans. Ind. Appl., IA-23(3), 464 (1987)
  13. Keefe D, Nolan PJ, Rich TA, Proceedings of the Royal Irish Academy, 60, 27 (1959)
  14. Kraemer HF, Johnstone HF, Ind. Eng. Chem., 47(12), 2426 (1955) 
  15. Kuwabara S, J. Phys. Soc. Jpn., 14(4), 527 (1959)
  16. Nelson GO, Bergman W, Miller HH, Taylor RD, Am. Ind. Hyg. Assoc. J., 39, 472 (1978)
  17. Nielsen KA, Hill JC, AIChE J., 26(4), 678 (1980) 
  18. Oak MJ, Saville DA, J. Colloid Interface Sci., 76(1), 259 (1980) 
  19. Park HS, Park YO, Korean J. Chem. Eng., 22(1), 165 (2005)
  20. Park YO, Park HS, Park SJ, Kim SD, Choi HK, Lim JH, Korean J. Chem. Eng., 18(6), 1020 (2001)
  21. Payatakes AC, Filtr. Sep., 602 (1976)
  22. Sakano T, Otani Y, Namiki N, Emi H, Sep. Purif. Technol., 19, 145 (2000) 
  23. Shapiro M, Laufer G, Gutfinger C, Atmos. Environ., 17(3), 477 (1983) 
  24. Tien C, Wang C, Barot DT, Science, 196, 983 (1977) 
  25. Walsh DC, Stenhouse JIT, Aerosol Sci. Technol., 29, 419 (1998) 
  26. Wang CS, Powder Technol., 118(1-2), 166 (2001) 
  27. Wang CS, Ho CP, Makino H, Iinoya K, AIChE J., 26(4), 680 (1980) 
  28. Wu Z, Walters JK, Thomas DWP, Aerosol Sci. Technol., 30, 62 (1999) 
  29. Zebel G, J. Colloid Science, 20, 522 (1965)