화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.16, No.2, 217-225, April, 2005
유로 변경식 고도하수처리 공정의 최적 제어 알고리즘에 관한 연구
A Study on the Optimal Control Algorithms for the Advanced Wastewater Treatment Process with Variable Hydrodynamic Flow Patterns
E-mail:
초록
H사의 유로변경식 고도하수처리 공법의 제어 변수가 DO와 수온 등으로 한정되어 있어 효율성의 만족도를 충족시켜주지 못하는 현재의 상황을 개선하고자 세 가지 개선방향을 설정하여 Simulation을 통한 Operation Data의 분석 및 장치구성과 실험을 통한 최적제어 Logic을 연구하여 이를 다시 S하수처리장에 설치ㆍ적용한 결과이다. 본 실험을 통해서 수온과 유량에 근간한 Operation Mode 변경의 최적화와 이를 통한 동력비 절감을 이루었고 암모니아성 질소의 농도에 따른 Operation Mode의 변경에서 일반 Normal Mode와 병행하여 Save Mode를 새로 적용하여 동력비 절감을 이루었다. 또한 DO 값을 송풍량과 수중폭기기의 교반속도에 의해 비례제어하고 유출수의 암모니아 농도에 따라 DO 값을 제어하여 안정적인 질산화를 이루었다. 이러한 결과는 공정효율의 극대화와 운영 및 유지관리비의 절감을 이루었다.
Because of the limitation of controllable operation variables for the wastewater treatment process with variable hydrodynamic flow patterns, it may preclude the use of this type of nutrient removal activated sludge process. As the operation variables, only temperature and dissolved oxygen (DO) have been used to operate the process. This study made an effort to improve treatment efficiency and operability of the process by the following methodologies: 1)process and operation data analysis using process simulation, 2) determination of optimal control logic or algorithm using a pilot-scaled experimental apparatus and its operations, and 3) application of experimental and simulation results to find the optimal process operation modes. In this study, it was found that the optimal operation mode named 'save mode' in the basis of process variables, such as the ammonia-nitrogen concentration of inlet flow, temperature and flow rate, can reduce the operation cost comparing with the present normal operation mode. And the stable conditions in nitrification were also shown by the proportional control of DO with the inlet air flow rate of blower and the mixing rate of mechanical aeration.
  1. Henze et al., IAWPRC Scientific and Technical Report, No. 1, IAWPRC, London (1987)
  2. Henze et al., IAWQ Scientific and Technical Report, No.3, IAWQ, London (1995)
  3. Henze et al., Water Science and Technology, Volume 39 Nr 1, IAWQ, London (1999)
  4. Cinar O, Daigger GT, Graef SP, Water Environ. Res., 70, 1216 (1998) 
  5. Koch G, Kuhni M, Gujer W, Siegrist H, Water Res., 34, 3580 (2000) 
  6. Gujer W, Henze M, Mino T, vanLoosdrecht M, Water Sci. Technol., 39, AR1 (1999)
  7. Wichern M, Obenaus F, Wulf P, Rosenwinkel KH, Water Sci. Technol., 44, 49 (2001)
  8. SSeco A, Ferrer J, Serralta J, Manga J, Munoz M, Environ. Technol., 22, 497 (2001)
  9. Rieger L, Koch G, Kuhni M, Gujer W, Siegrist H, Water Res., 35, 3887 (2001)