AIChE Journal, Vol.50, No.8, 1786-1794, 2004
Nonlinear kinetic parameter estimation for batch cooling seeded crystallization
Kinetic parameter estimation for most batch crystallization processes is necessary because nucleation and crystal growth kinetic parameters are often not available. The existing identification methods are generally based on simplified population balance models such as moment equations, which contain insufficient information on the crystal size distribution (CSD). To deal with these problems, a new optimization-based identification approach for general batch cooling seeded crystallization is proposed in this study. The final-time CSD is directly used for identification. A novel effective method for solving the population balance equation is developed and used to identify nucleation and growth kinetic parameters. Cooling crystallization of ammonium sulfate in water was experimentally investigated, where the concentration was measured by an on-line density meter and the final-time CSD was analyzed by a Malvern Mastersizer 2000. Kinetics for ammonium sulfate are determined based on cooling crystallization experiments. Applying these kinetics in simulation provides a good prediction of the product CSD. (C) 2004 American Institute of Chemical Engineers.
Keywords:model identification;batch crystallization;crystal size distribution;crystallization kinetics;ammonium sulfate