화학공학소재연구정보센터
Biomass & Bioenergy, Vol.27, No.2, 155-171, 2004
Stoichiometric, mass, energy and exergy balance analysis of countercurrent fixed-bed gasification of post-consumer residues
Air-blown gasification studies were conducted on a countercurrent fixed-bed gasifier for municipal residue-based Refuse Derived Fuel (RDF) pellets and compared with the mass and energy performance features of gasifier with other biomass and residual fuels. The mass conversion efficiency and cold gas efficiency (CGE) of the gasifier were observed to be 83% and 73%, respectively for RDF pellets. The higher heating value and global energy content of the producer gas generated from gasification of RDF pellets was observed to be 5.58 MJ Nm(-3) and 12.2 MJ kg(-1), respectively. The tar content in the gas generated from RDF pellets was observed to be about 45% less than the tar content in the gas generated from wood chips (WC). Empirical stoichiometric equations were developed to describe the gasification of different fuels. A complete thermodynamic analysis was performed to determine the magnitudes of various inefficiencies and irreversibilities involved in the process. It was evaluated for RDF pellets that 27% of the exergy or available energy input was dissipated in the system due to various irreversibilities taking place in the gasification process. The second law CGE was observed to be highest for RDF pellets i.e. 56% followed by charred soybean straw pellets and WC. Thermal energy in the form of sensible heat energy accounted for 6-7% of the total energy; the available energy accounted for 2-3% of the total energy output of the process. (C) 2003 Published by Elsevier Ltd.